
Ensemble Learning
(Ch. 18.3-18.4, 18.10)

Overfitting

To avoid overfitting, we typically split the
examples into a training and test sets

We only use the training sets to generate
learning, then use the test set to estimate
(called cross-validation)

This has the downside that if you have few
examples, you are not using the test set
as part of the learning algorithm

Overfitting

One way around this is k-fold cross-validation,
where examples are split into k subsets

You then do k separate learning attempts, each
time leaving one subset out of training as test

You then average (mean) the accuracy over
these k learning attempts as a better estimate
of the overall algorithm accuracy

Overfitting

For example, 3-fold cross-validation...
Data: (break into sets of three)

h
1
 = learn on d

1
&d

2
... test on d

3
=77% accuracy

h
2
 = learn on d

1
&d

3
... test on d

2
=75% accuracy

h
3
 = learn on d

2
&d

3
... test on d

1
=90% accuracy

Overall accuracy estimate = (77+75+90)/3

d
1

d
2

d
3

h are different learned decision trees or w/e learning alg

Overfitting

In general, if you have an algorithm that has
parameters for the learning...

You should not use the test set to adjust the
parameters (this is purpose defeating)

However, it could still be useful to measure
parameters... so we could split the training
data into subsets: sub-training and validation

Overfitting

You can then use the “sub-training” set to
train on and “validation” set to measure

For example, we could say the “size” of a
decision tree is how many attributes are used
(tree is generated in approximately same way,
except in a BFS rather than DFS manner)

Then we use validation to estimate when
“size” starts to overfit (i.e. find best param.)

Overfitting

A “typical” learning algorithm would look
something like this:

Overfitting

So we would guess that size=7 is optimal,
then use the full training set (sub+val) to learn

overfitting

Ensemble Learning

If we have multiple algorithms for predicting,
we can use them together to get a better
result than any individual prediction

This method is called ensemble learning, and
there are a number of ways to do this

Take a simple example: You have three algs,
all with 80% accuracy... If you use majority
vote, what is the overall accuracy?

Ensemble Learning

A common ensemble technique is called
boosting, where you weight training examples

This allows you to put more weight on data
that is often misclassified, so when making
multiple learning algs. can focus learning

This helps ensure there is not a “gap” in your
learning, one such algorithm is “AdaBoost”
(Adaptive Boosting)

Ensemble Learning

AdaBoost: (Set w[data] array = 1/size(data))
Loop k times: (k = number of classifiers)

error = 0
h[k] = learn from weighted data
Loop over data:

if h[k] misclassifies: error += w[data]
Loop over data:

if h[k] correct: w[data] *= error/(1-error)
z[k] = log[(1-error)/error]

return weighted-vote(h,z) // z is weight

Ensemble Learning

AdaBoost has a nice property that if all of
your classifiers are “weak learners”
(accuracy > 50%)

Then enough k (number of classifiers),
AdaBoost has 100% accuracy on training set

Though, obviously, this does not extend to
100% accuracy in practice (or on test set)

Online Learning

So far we have assumed that learning data has
been i.i.d. (independent and identically
distributed), which is often fine...

Independent(examples don’t effect each other):

Identically distributed (no example bias):
jth example

Online Learning

This is not always the case... for example
your movie preferences has probably changed
since you were a kid (not independent)

Kid
Now

Online Learning

We can still do “learning” even if examples
change over time (as long as not too fast)

This is called online learning as we cannot
just wait until all examples are given

Instead, the algorithm needs to be more
iterative as it needs to:
(1) change over time (disregard old data)
(2) cannot recompute from scratch

Online Learning

One such algorithm is randomized weighted
majority algorithm:

Assume you have “K” classifiers
Initialize weight of each classifier as 1
(1) Choose random classifier by:

(2) Predict using chosen classifier
(3) Get real result and adjust any incorrect
classifiers by:

Online Learning

We can actually get a bound on how many
incorrect classifications, M, we get:

... where M* is the best classifier,
K is the number of classifiers,
β is a parameter (up to us), but 0 < β < 1

Here, β determines how fast we adapt to
changes (β near 0 is for faster changes)

Online Learning

If we set β close to 1, then we can get
asymptotically close to the best classifier, M*

However, there is a trade-off, as β close to 1
also means we will “try” poor classifiers
more before we give up on them

For example, assume K=10...
β=0.25: β=0.8:

more “long term” as closer
to M*, but have to pay a larger
“constant” mistake penalty

	Slide 1
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

