
Decision Trees
(Ch. 18.1-18.3)

Learning

We will (finally) move away from uncertainty
(for a bit) and instead focus on learning

Learning algorithms benefit from flexibility
to solver a wide range of problems, especially:
(1) Cannot explicitly program (what set of

if-statements/loops tells dogs from cats?)

(2) Answers might change over time (what
is “trendy” right now?)

Learning

We can categorize learning into three types:

Unsupervised = No explicit feedback

Reinforcement = Get a reward or penalty
based on quality of answer

Supervised = Have a set of inputs with the
correct answer/output (“labeled data”)

Learning

Horse: House:

Unsupervised:
Computer guesses: “donkey”, “spaceship”
You don’t tell it anything: “...”

Learning

Horse: House:

Reinforcement:
Computer guesses: “donkey”, “spaceship”
You answer: “close”, “not really”

Learning

Horse: House:

Supervised:
Computer doesn’t guess: “...”
You tell: “that is horse”, “that is house”

Learning

We can categorize learning into three types:

Unsupervised = No explicit feedback

Reinforcement = Get a reward or penalty
based on quality of answer

Supervised = Have a set of inputs with the
correct answer/output (“labeled data”)

easiest... so we will assume this for a while

Learning Trade-offs

One import rule is Ockham’s razor which is:
if two options work equally well, pick simpler

For example, assume we want to find/learn
a line that passes through:
(0,0), (1,1), (2,2)

Quite obviously “y=x” works,
but so does “y=x3-3x2+3x”
... “y=x” is a better choice

Learning Trade-offs

A similar (but not same) issue that we often
face in learning is overfitting

This is when you try too hard to match your
data and lose a picture of the “general” pattern

This is especially important if noise or errors
are present in the data we use to learn
(called training data)

Learning Trade-offs

A simple example is suppose you want a line
that passes through more points:
(0,0), (1,1), (2,2), (3,3), (4,4), (5,5.1), (6,6)

Line “y=x” does not quite work due to (5,5.1)

But it might not be worth using a degree 6
polynomial (not because finding one is hard),
as it will “wiggle” a lot, so if we asked for y
when x=10... it will be huge (or very negative)

Decision Trees

One of the simplest ways of learning is a
decision tree (i.e. a flowchart... but no loops)

For example, you could classify movies as:

violent?

historical? love?

funny?war action romance

comedy family

yes

yes yes

yes

no

no no

no

Decision Trees

One of the simplest ways of learning is a
decision tree (i.e. a flowchart... but no loops)

For example, you could classify movies as:

violent?

historical? love?

funny?war action romance

comedy family

yes

yes yes

yes

no

no no

no

call these
attributes/inputs

outputs/classification

Decision Trees

If I wanted to classify Deadpool
our inputs might be:
[violent=yes, historical=no,
love=not really, funny=yes]

violent?

historical? love?

funny?war action romance

comedy family

yes

yes yes

yes

no

no no

no

our answer

Decision Trees

In our previous example, the attributes/inputs
were binary (T/F) and output multivariate

The math is it simpler the other way around,
input=multivariate & output=binary

An example of this might be deciding on
whether or not you should start your
homework early or not

Decision Trees

Do homework early example:

when assigned?

number of problems?

understand topic?

yes

aww; no

yes no

over 1 week ago

<3

less than a week

3 to 5
yes

>5

yes

not really sorta back of hand

Making Trees

... but how do you make a tree from data?
Example A B C D E Ans

1 T low big twit 5 T

2 T low small FB 8 T

3 F med small FB 2 F

4 T high big snap 3 T

5 T high small goog 5 F

6 F med big snap 1 F

7 T low big goog 9 T

8 F high big goog 7 T

9 T med small twit 2 F

10 F high small goog 4 F

Making Tress: Brute Force

The brute force (try every option; find best)
way would be: let n = 5 = number attributes

If these were all
T/F attributes...
there would be
2n=25 rows for a full
truth table

Example A B C D E Ans

1 T low big twit 5 T

2 T low small FB 8 T

3 F med small FB 2 F

4 T high big snap 3 T

5 T high small goog 5 F

6 F med big snap 1 F

7 T low big goog 9 T

8 F high big goog 7 T

9 T med small twit 2 F

10 F high small goog 4 F

Making Tress: Brute Force

But each row of the truth table could be T/F

So the number of
T/F combinations
in the answer is:

This is very gross,
so brute force is out

Example A B C D E Ans

1 T low big twit 5 T

2 T low small FB 8 T

3 F med small FB 2 F

4 T high big snap 3 T

5 T high small goog 5 F

6 F med big snap 1 F

7 T low big goog 9 T

8 F high big goog 7 T

9 T med small twit 2 F

10 F high small goog 4 F

Making Tress: Recursive

There are two key facts to notice:
(1) You need to pick an attribute to “split” on
(2) Then you have a recursive problem

(1 less attribute, fewer examples)

split A A?
T F

Making Tress: Recursive

This gives a fairly straight-forward recursive
algorithm:

def makeTree(examples):
if output all T (or all F), make a leaf & stop
else (1) A=pick attribute to split on

for all values of A:
(2) makeTree(examples with A val)

Making Tress: Recursive

What attribute should you split on?

Does it matter?

If so, what properties do you want?

Making Tress: Recursive

What attribute should you split on?
A very difficult question, the best answer is
intractable so we will approximate

Does it matter?
Yes, quite a bit!

If so, what properties do you want?
We want a variable that separates the trues
from falses as much as possible

Entropy

To determine which node to use, we will do
what CSci people are best at:
copy-paste someone else’s hard work

Specifically, we will “borrow” ideas from
information theory about entropy
(which, in turn, is a term information theory
“borrowed” from physics)

Entropy means a measure of disorder/chaos

Entropy

You can think of entropy as the number of
“bits” needed to represent a problem/outcome

For example, if you flipped a fair coin...
you get heads/tails 50/50

You need to remember both numbers (equally)
so you need 1 bit (0 or 1) for both possibilities

Entropy

If you rolled a 4-sided die, you would need
to remember 4 numbers (1, 2, 3, 4) = 2 bits

A 6-sided die would be log
2
(6) = 2.585 bits

If the probabilities are not uniform, the system
is less chaotic... (fewer bits to “store” results)

So a coin always lands heads up: log
2
(1) = 0

Entropy

Since a 50/50 coin = 1 entropy/bits
... and a 100/0 coin = 0 entropy/bits

Then a 80/20 coin = between 0 and 1 bits

The formal formula is entropy, H(V), is:

... where V is a random variable and v
k
 is

one entry in V (only uses prob, not value part)

Entropy

... so a 50/50 coin is random variable:
x = [(0.5, heads), (0.5, tails)]

Then... for our other examples:
y = [(0.8, heads), (0.2, tails)]

z = [(1/6, 1), (1/6, 2), (1/6, 3), ... (1/6, 6)]

Entropy

How can we use entropy to find good splits?

Entropy

How can we use entropy to find good splits?

Compare entropy/disorder before and after
split:

split A A?
T F

before: 5 T, 5 F move info here

4 T, 2F 1 T, 3 F

Entropy

How can we use entropy to find good splits?

Compare entropy/disorder before and after
split:

A?
T F

4 T, 2F 1 T, 3 F

5 T, 5 F
% of total true

Entropy

How can we use entropy to find good splits?

Compare entropy/disorder before and after
split:

A?
T F

4 T, 2F 1 T, 3 F

5 T, 5 F
% of total true how combine?

Entropy

Random variables (of course)!
after

A
 = [(6/10, 0.918), (4/10, 0.811)]

So expected/average entropy after is:

We can then compute the difference (or gain):

More “gain” is means less disorder after

6 of 10 examples had A=T

Entropy

So we can find the “gain” for each attribute
and pick the argmax attribute

This greedy approach is not guaranteed to get
the shallowest (best) tree, but does well

However, we might be over-fitting the data...
but we can use entropy also determine this

Statistics Rant

Next we will do some statistics

\rantOn
Statistics is great at helping you make
correct/accurate results

Consider this runtime data, is alg. A better?
A 5.2 6.4 3.5 4.8 3.6

B 5.8 7.0 2.8 5.1 4.0

Statistics Rant

Not really... only a 20.31% chance A is better
(too few samples, difference small, var large)

Yet, A is faster 80% of the time... so you
might be mislead in how great you think
your algorithm is
\rantOff

A 5.2 6.4 3.5 4.8 3.6

B 5.8 7.0 2.8 5.1 4.0

Decision Tree Pruning

We can frame the problem as: what is the
probability that this attribute just randomly
classifies the result

Before our “A” split, we had with 5T and 5F
A=T had 4T and 2F

So 6/10 of our examples went A=T...
if these 6/10 randomly picked from the 5T/5F
we should get 5*6/10 T on average randomly

Decision Tree Pruning

Formally, let p=before T=5, n=before false=5
p

A=T
=T when “A=T” = 4

n
A=F

=F when “A=T” = 2
... and similarly for p

A=F
 and n

A=F

Then we compute the expected “random”
outcomes:

5 * 6/10 = 3 T on average by “luck”

Decision Tree Pruning

We then compute (a “test statistic”):

Decision Tree Pruning

Once we have “x” we can jam it into the
χ2 (chi-squared) distribution:

So there is a 19.67% chance this variable
is just “randomly” assigning... so we might
want to not use “A” here (other places maybe)

The “typical” threshold we look for is 5%
of being “random”... if so, could collapse node

= [possible attribute values] -1 (degrees of freedom)

for T/F happens when x>3.841

What is this χ2 thing?

I think most people are familiar with the
“bell”/normal/Gaussian distribution:

P(x<2)

N(μ,σ2)(x) needs
2 paramters: μ,σ

What is this χ2 thing?

χ2 is just a different distribution that only
requires 1 parameter (degrees of freedom)

Written both as χ2(k,x) or χ2(k)(x)

a statistics thing... out of the scope of this course

Decision Tree Pruning

So, suppose you had a “bad” attribute
(conflicting examples/inputs in this case):

Notice the attribute “X” is not really helping
(at all...), so you could just remove it

X?
T F

2T, 1F 2T, 1F

4 T, 2 F leaf node, ran out
 of attributes...

more T than F so just “guess” T

Complications

There are a number of complications:
(1) Attributes with more possible “values”

seem better than they are
(2) Integers/doubles you typically want to

threshold to remove issue of (1)
(3) If you want a continuous output rather

than a classification, your leaf needs
to be a function rather than a single value

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

