
POMDPs
(Ch. 17.4-17.6)

Markov Decision Process

Recap of Markov Decision Processes (MDPs):

Know:
- Current state (s)
- Rewards for states (R(s))

Uncertain:
- Result of actions (a)

POMDPs

Today we look at Partially Observable MDPs:

Know:
- Current state (s)
- Rewards for states (R(s))

Uncertain:
- Current state (s)
- Result of actions (a)

Filtering + Localization

where walls are

POMDPs

Let’s examine this much simpler grid:

Instead of knowing our exact
state, we have a belief state,
which is a probability for being in an state

Additionally, we assume we cannot perfectly
sense the state, instead we observe some
evidence, e, and have P(e|s)

1

-1

-1

rewards, R(s)

POMDPs

Let’s assume our movement is a bit more
erratic: 70% in intended direction,
10% in any other direction

So move “left” =

Given our rewards, you want to reach the
bottom left square and stay there as long as
possible

1

-1

-170% 10%
10%

10%

POMDPs

Suppose our sensor could detect if we are in
the bottom left square, but not perfectly

Suppose P(e|s) is:

... and P(¬e|s) is:

90%

20%

20%

10%

80%

80%

POMDPs

Assume our starting belief state is:

Obviously, we want to go either
down or left as best action

Suppose we went “left” and saw evidence “e”

What is the resulting belief state?

50%

50%

POMDPs

If we are in the top square,
we could see “e” by:
(1) Luckily moving down, see “e”

(2) Saying in top, see “e” unluckily

... or we could be in right square and:
(1) Move left and see “e”:
(2) Unluckily stay, see “e” unluckily

50%

50%

10%

70%

POMDPs

Since both top and right have a 50% chance of
starting there, probability of bottom-left is:

Thus probability top-left:
... and bottom-right:
... then normalize so we get:

50%

50%

move left,
see “e”

19%

6%75%
belief state: b belief state: b’

POMDPs

Formally, we can write how to get the next
belief state (given “a” and “e”) as:

What does this look like?

POMDPs

Formally, we can write how to get the next
belief state (given “a” and “e”) as:

What does this look like?

This is basically the “forward” message in
filtering for HMMs

POMDPs

This equation is nice if we choose an action
and see some evidence, but we want to find
which action is best without knowing evidence

In other words, we want to start with some
belief state (on below) and determine what
the best action is (move down)

How can you do this?

19%

6%75%

POMDPs

Well, you can think of this as a transition
from b to b’ given action a... so we sum over e

P(b’|b,a,e) = 1
if b’ is the forward
filtering message...
0 otherwise

POMDPs

Thus, we can define transitions between
belief states: P(b’ | b, a)

And we can find the expected reward of b’ as:
, so for our b’:

50%

50%

move left 19%

6%75%
belief state: b belief state: b’

do not assume
see “e”

48%
chance
of this b’

calc as before

52% chance b’ with ¬e

POMDPs

Essentially, we have reduce a POMDP
to a simple MDP, except we have transitions
and rewards of belief states (not normal states)

This is slightly problematic as belief states
involve probabilities, so there are an infinite
amount of them (and probability numbers)

This makes them harder to reason on,
but not impossible...

Value Iteration in POMDPs

Let’s consider an even more simplified
problem to run a modified value iteration:

We will only have two states: s
0
, s

1
,

with R(s
0
)=0, R(s

1
)=1

Thus we can use the Bellman equation,
except with belief states (let γ=1)

0 1

Value Iteration in POMDPs

Assume there are only two actions: “go” and
“stay” (with 0.9 chance of result you want)

A=“go” at s
0
:

A=“go” at s
1
:

A=“stay” at s
0
:

A=“stay” at s
1
:

... thus we can graph the actions as lines on
belief probability vs utility graph

Value Iteration in POMDPs

Just like with the Bellman equations, we want
max action, so pick “Go” if prob<0.5

action utility
after one step

p(s1),
p(s0) = 1-num

p(s
0
)=0.8 and “stay” means

0.8*U(s0, “stay”)+0.2*U(s1, “stay”)
=0.8*1.9 + 0.2*0.1 = 1.54

Value Iteration in POMDPs

In fact, as we compute the overall utility
of a belief state as:

... this will always be linear in terms of b(s)

So in our 2-D example, we will always get a
number of lines that we want to find max of

For larger problems, these would be
hyper-planes (i.e. if we had 3 states, planes)

Value Iteration in POMDPs

However, to find the best second action we
need to account for the seen evidence

Assume our evidence has 2 options(true/false),
then we’ll need to generate eight lines for
potential next best actions

For each of the initial two lines, we have four
have to consider four combinations of next
actions (based on evidence)

Value Iteration in POMDPs

All 8 possibilities of two sequence actions:

dashed line is “dominated”
and can be ignored

Value Iteration in POMDPs

4 options after dropping terrible choices:

Value Iteration in POMDPs

These non-dominated actions make a utility
function: (1) linear (piece-wise) (2) convex

Unfortunately, the worst-case is approximately
 , so even in our simple 2-evidence &

2-action POMDP at depth 8 it has 2256 lines

Thankfully, if you remove dominated lines,
at depth 8 there are only 144 lines that form
the utility function estimate

Value Iteration in POMDPs

This website gives a bit better visualizations
than the book:
https://pomdp.org/tutorial/pomdp-vi-example.html

It shows how you progressively update
the values you will get depending on the
initial distribution of probabilities

(Though it skips all the formulas)

Online Algorithm in POMDPs

You could also break down the
actions/evidence to build a tree to search

Requires leaf as estimate, but is:

50%

50%

move left 19%
6%75%

48%

b
0

b
1

e

52% 69%
23%8%

move down
... e

b
2

left

	Slide 1
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 35
	Slide 36
	Slide 38
	Slide 39
	Slide 41

