
Policy Iteration
(Ch. 17.3)

Announcements

HW 3 due Thursday

Markov Decision Process

 = +50 (end)
 = -50 (end)
All other = -1
(i.e. -1 for
movement)

Goal: maximize
score before
reaching end

1 2 3 4

1

2

3

4

Markov Decision Process

When the robot
tries to move,
80% of the time
it ends up where
it wants to go

10% it will end
up 90 degrees off

Wall = no move

1 2 3 4

1

2

3

4
80%

10%

10%

S = [s
0
, s

1
, s

2
, s

3
, ...], S’ = [s

0
’, s

1
’, s

2
’, s

3
’, ...]

Suppose you prefer S over S’ and s
0
 = s

0
’

... If you can then conclude that you would
prefer [s

1
, s

2
, s

3
, ...] over [s

1
’, s

2
’, s

3
’, ...]

We call this a stationary preference
(and it has some large implications)

MDP Utilities

If you have a stationary preference, then there
are only two valid utility functions:

Additive:

Discounted:

... where 0<γ<1

MDP Utilities

You simply repeat this process until the
numbers “converge” (i.e. stop changing much)

In fact, it is both guaranteed to converge
always and within a bounded amount

It has been shown that if you have two sets
of utilities U

0
 and U

0
’, then use Bellman eq.s

to get U
1
 and U

1
’, then:

Value Iteration Convergence

the ∞-norm (i.e. abs max), || [1,-2] – [2, 4] || = 6

This means no matter what two sets of
utilities you have, they will become “closer”
after applying the Bellman update

This is called a contraction and has a nice
property you will always converge to a
unique solution (when γ<1)

We can also notice that if U* are the correct
utilities, applying Bellman will not change

Value Iteration Convergence

Thus, if U
i
 is after applying the Bellman eq.

i times:

But we have a “worst case” utility of:

Since the difference can at most double this:

Value Iteration Convergence

If we want to guarantee we are within ε of the
optimal solution, we can then find N:

... as each update contracts/shrinks by γ and
we start at most 2*R

max
/(1-γ) away from opt.

Also do not need to wait for utility to converge
as policy just needs to find best action

Value Iteration Convergence

The Bellman equations find some “utility”
for each state that you then find best actions

... but our original goal was:

This is similar to the Bellman equations,
but Bellman only look one step ahead...
while our goal is start to end

Value Iteration Convergence

This is actually not a problem, as if after
doing “i” Bellman updates, you have:

... then you are guaranteed (worse case) to be
within a a bound of the optimal policy:

We can the above the “policy loss”

Value Iteration Convergence

Turns out, you can represent state utility in
terms of other states (Bellman equation):

So for example, the utility of (2,2):
U(2,2) = -1 + γ * max of:
a=Up:
a=D:
a=L:
a=R:

Bellman Equations

s=(2,2)
U(1,2)=50

Assuming you should go “up” from (2,2):
(let γ=1.0)

Then some algebra:

... What is U(2,3) assuming
best answer is going “left”?

Bellman Equations

last time γ=0.9

U(2,3) going “left” is:

... algebra ...

Could solve this as sys. linear
equations, but we cheated

Bellman Equations

assumed we knew
which actions

This type of problem happens a lot:
If you knew A, you could solve for B
If you knew B, you could solve for A
Yet you know neither A or B

Solution: Initialize A to guess (or random)
1. Solve for B with fixing A
2. Solve for A with fixing B
3. Repeat above 2 until convergence

Policy iteration

So we can actually “cheat” and just assume
we know the best direction to move

Use this to find the resultant utilities
(solving a system of linear equations)

Then once we have utilities, go back and
re-find the best directions to move
(loop process... though we could have also
started with just guessing random utilities)

Policy iteration

We call this method policy iteration

Initialize the values in grid with
with deterministic movement

Then we find best action for each square:

Policy iteration

49
48

48 47
46
4544

50

47
-50

only part that depends on action

Consider the agent's starting
square (the 47)

Find best action (above eq.):
U(4,2): argmax(Go U, D, L, R)
=argmax((0.8*[U] + 0.1*[L] + 0.1*[R]),

 (0.8*[D] + 0.1*[R] + 0.1*[L]),
 (0.8*[L] + 0.1*[D] + 0.1*[U]),
 (0.8*[R] + 0.1*[U] + 0.1*[D]))

Find best action

49
48

48 47
46
4544

50

47
-50

From the 47 (agent start):
[U] = 48, [L] = 47 = [D],
[R] = 44,

argmax((0.8*48 + 0.1*47 + 0.1*44),
 (0.8*47 + 0.1*44 + 0.1*47),
 (0.8*47 + 0.1*47 + 0.1*48),
 (0.8*44 + 0.1*48 + 0.1*47))

=argmax(47.5, 46.7, 47.1, 44.7)
=Go U

49
48

48 47
46
4544

50

47
-50

Find best action

We repeat this process for every
square and get a “best action”
grid

Then use the Bellman eq. with
fixed actions to get system of linear equations
(each state is 1 unknown value with 1 equation)

Find values

assuming action removes max... makes linear

Find values

U(1,2)= +50 (goal)
U(2,2)=-1+0.8*U(1,2)+0.1*U(2,2)+0.1*U(2,3)
U(2,3)=-1+0.8*U(2,2)+0.1*U(2,3)+0.1*U(2,3)
U(2,4)=-1+0.8*U(2,3)+0.1*U(3,4)+0.1*U(2,4)
U(3,1)= -50 (pit)
U(3,2)=-1+0.8*U(3,2)+0.1*U(2,2)+0.1*U(4,2)
U(3,4)=-1+0.8*U(2,4)+0.1*U(3,4)+0.1*U(3,4)
U(4,2)=-1+0.8*U(3,2)+0.1*U(4,2)+0.1*U(4,3)
U(4,3)=-1+0.8*U(4,2)+0.1*U(4,3)+0.1*U(4,3)
U(4,4)=-1+0.8*U(3,4)+0.1*U(4,3)+0.1*U(4,4)

Find values

a = 50
b=-1+0.8*a+0.1*b+0.1*c
c=-1+0.8*b+0.1*c+0.1*c
d=-1+0.8*c+0.1*g+0.1*d
e= -50
f=-1+0.8*f+0.1*b+0.1*h
g=-1+0.8*d+0.1*g+0.1*g
h=-1+0.8*f+0.1*h+0.1*i
i=-1+0.8*h+0.1*i+0.1*i
j=-1+0.8*g+0.1*i+0.1*j

a
b c d

e f g
h i j

Find values

Solving that mess gives you these new values:

At this point, you would again find the best
move for the values above and repeat until
the actions do not change

50

-50

48.59 47.34 45.93

37.18

35.78

 44.68

34.53 42.44

Policy Iteration

Now you do it!
 1. Find the best actions for these values
 2. If any actions changed, setup sys. lin. eq.

(otherwise you know best paths)

50

-50

48.59 47.34 45.93

37.18

35.78

 44.68

34.53 42.44

50

-50

48.59 47.34 45.93

37.93

37.28

 44.68

42.03 43.28

1.

2.

Policy Iteration

After 1 more system of linear equations, the
actions stabilize and we find that we should
go around the long way to the goal

(i.e. pit is too dangerous)

The starting node will have a value of
40.6526, so it will take approximately
9.34743 steps to reach the goal
(using optimal actions at each step)

Policy Iteration

When “solving the system of linear equations”
you don’t actually need an exact solution
(an approximate one works normally)

So you could just do value iteration with
fixed policies instead

Also, you do not technically need to update
all values, instead you could update just a
subset if you wished

Policy Iteration

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 32
	Slide 33
	Slide 34

