Kalman Filter (Ch. 15)

How does all of this relate to Kalman filters?

This is just "filtering" (in HMM/Bayes net), except with continuous variables

This heavily use the Gaussian distribution:

$$N(\mu, \sigma^2)(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-1}{2} \frac{(x-\mu)^2}{\sigma^2}} = \alpha e^{\frac{-1}{2} \frac{(x-\mu)^2}{\sigma^2}}$$

thank you alpha!

Why the preferential treatment for Gaussians?

A key benefit is that when you do our normal operations (add and multiply), if you start with a Gaussian as input, you get Gaussian out

In fact, if you input a <u>linear Gaussian</u> input, you get a Gaussian out: (linear=matrix mult)

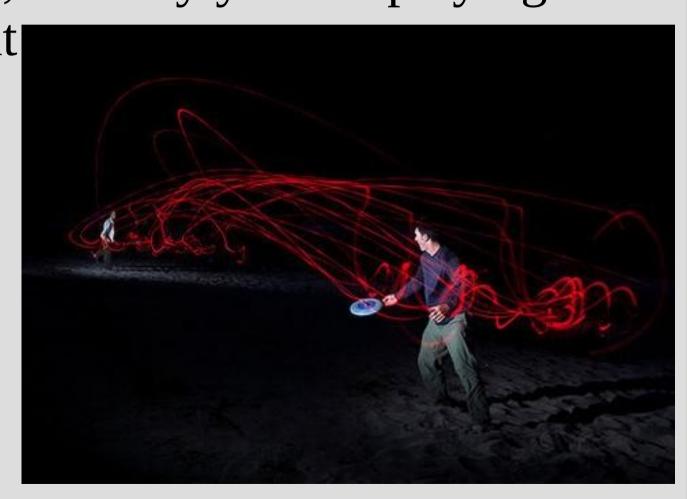
More on this later, let's start simple

As an example, let's say you are playing

Frisbee at night

1. Can't see exactly where friend is

2. Friend will move slightly to catch Frisbee



 σ_x^z is how much

friend moves

Unfortunately... the math is a bit ugly (as

Gaussians are a bit complex)

y-axis = prob x_{t+1}

Here we assume:

$$P(x_{t+1}|x_t) = \alpha e^{\frac{-1}{2} \frac{(x_{t+1}-x_t)^2}{\sigma_x^2}} = N(x_t, \sigma_x^2)(x_{t+1})$$

$$P(e_t|x_t) = \alpha e^{\frac{-1}{2}\frac{(e_t - x_t)^2}{\sigma_e^2}} = N(x_t, \sigma_e^2)(e_t)$$
variance is "can't see well"

How do we compute the filtering "forward" messages (in our efficient non-recursive way)?

 σ_x^z is how much

friend moves

Unfortunately... the math is a bit ugly (as

Gaussians are a bit complex)

y-axis = \ prob x_{t+1}

Here we assume:

$$P(x_{t+1}|x_t) = \alpha e^{\frac{-1}{2} \frac{(x_{t+1}-x_t)^2}{\sigma_x^2}} = N(x_t, \sigma_x^2)(x_{t+1})$$

$$P(e_t|x_t) = \alpha e^{\frac{-1}{2}\frac{(e_t-x_t)^2}{\sigma_e^2}} = N(x_t, \sigma_e^2)(e_t)$$
 variance is "can't see well" erm... let's change variable names

erm... let's change variable names How do we compute the filtering "forward"

messages (in our efficient non-recursive way)?

 σ_x^z is how much

friend moves

Unfortunately... the math is a bit ugly (as

Gaussians are a bit complex)

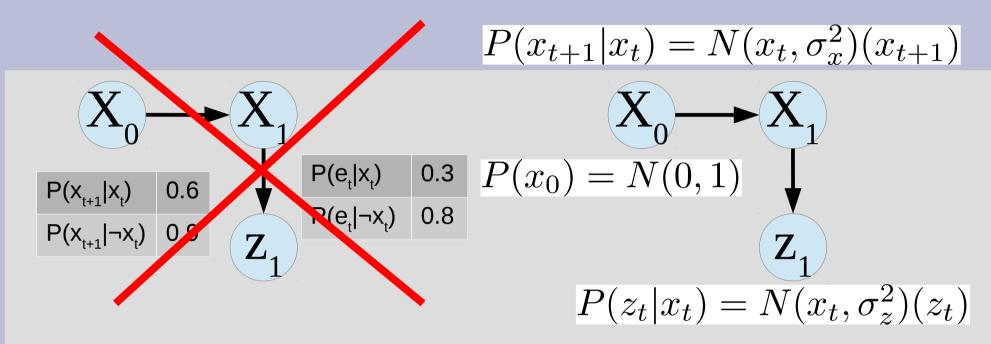
y-axis = prob x_{t+1}

Here we assume:

$$P(x_{t+1}|x_t) = \alpha e^{\frac{-1}{2} \frac{(x_{t+1}-x_t)^2}{\sigma_x^2}} = N(x_t, \sigma_x^2)(x_{t+1})$$

$$P(z_t|x_t) = \alpha e^{\frac{-1}{2}\frac{(z_t-x_t)^2}{\sigma_z^2}} = N(x_t, \sigma_z^2)(z_t)$$
 variance is "can't see well"

How do we compute the filtering "forward" messages (in our efficient non-recursive way)?



The same? Sorta... but we have to integrate

$$F_1 = P(z_1|x_1) \sum_{x_0} P(x_1|x_0) P(x_0)$$

$$F_1 = P(z_1|x_1) \int_{-\infty}^{\infty} P(x_1|x_0) P(x_0) dx_0$$

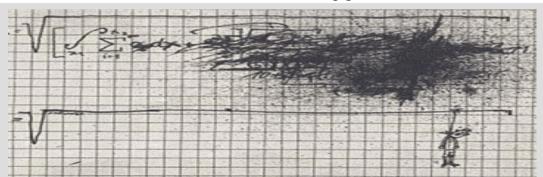
$$F_{1} = P(z_{1}|x_{1}) \int_{-\infty}^{\infty} P(x_{1}|x_{0})P(x_{0})dx_{0}$$

$$= N(x_{1}, \sigma_{z}^{2})(z_{1}) \int_{-\infty}^{\infty} N(x_{0}, \sigma_{x}^{2})(x_{1}) \cdot N(0, 1)(x_{0})dx_{0}$$

$$= N(x_{1}, \sigma_{z}^{2})(z_{1}) \int_{-\infty}^{\infty} \alpha e^{\frac{-1}{2} \frac{(x_{1} - x_{0})^{2}}{\sigma_{x}^{2}}} \cdot \alpha' e^{\frac{-1}{2} x_{0}^{2}} dx_{0}$$

$$= \hat{\alpha}N(x_{1}, \sigma_{z}^{2})(z_{1}) \int_{-\infty}^{\infty} e^{\frac{-1}{2} \frac{(x_{1} - x_{0})^{2} + \sigma_{x}^{2} x_{0}^{2}}{\sigma_{x}^{2}}} dx_{0}$$

$$= \hat{\alpha}N(x_{1}, \sigma_{z}^{2})(z_{1}) \int_{-\infty}^{\infty} e^{\frac{-1}{2} (\frac{(1 + \sigma_{x}^{2})}{\sigma_{x}^{2}} x_{0}^{2} + \frac{(-2x_{1})}{\sigma_{x}^{2}} x_{0} + \frac{x_{1}^{2}}{\sigma_{x}^{2}})} dx_{0}$$



Hope you feel

But wait! There's hope! We can use a little fact that:

$$ax^{2} + bx + c = a(x - \frac{-b}{2a})^{2} + (c - \frac{b^{2}}{4a})$$

$$f_1 = \hat{\alpha} N(x_1, \sigma_z^2)(z_1) \int_{-\infty}^{\infty} e^{\frac{-1}{2}(\frac{(1+\sigma_x^2)}{\sigma_x^2}x_0^2 + \frac{(-2x_1)}{\sigma_x^2}x_0 + \frac{x_1^2}{\sigma_x^2})}$$

$$= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) \int_{-\infty}^{\infty} e^{\frac{-1}{2}(a(x_0 - \frac{-b}{2a})^2 + (c - \frac{b^2}{4a})} dx_0$$

$$= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) \int_{-\infty}^{\infty} e^{\frac{-1}{2}(a(x_0 - \frac{-b}{2a})^2 + \frac{-1}{2}(c - \frac{b^2}{4a})} dx_0$$

$$= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2}(c - \frac{b^2}{4a})} \int_{-\infty}^{\infty} e^{\frac{-1}{2}(a(x_0 - \frac{-b}{2a})^2} dx_0$$

But wait! There's hope! We can use a little fact that:

$$ax^{2} + bx + c = a(x - \frac{-b}{2a})^{2} + (c - \frac{b^{2}}{4a})$$

does not contain x

$$F_{1} = \hat{\alpha}N(x_{1}, \sigma_{z}^{2})(z_{1}) \int_{-\infty}^{\infty} e^{\frac{-1}{2}(\frac{(1+\sigma_{x}^{2})}{\sigma_{x}^{2}}x_{0}^{2} + \frac{(-2x_{1})}{\sigma_{x}^{2}}x_{0} + \frac{x_{1}^{2}}{\sigma_{x}^{2}})}$$

$$= \hat{\alpha}N(x_{1}, \sigma_{z}^{2})(z_{1}) \int_{-\infty}^{\infty} e^{\frac{-1}{2}(a(x_{0} - \frac{-b}{2a})^{2} + (c - \frac{b^{2}}{4a})} dx_{0}$$

$$= \hat{\alpha}N(x_{1}, \sigma_{z}^{2})(z_{1}) \int_{-\infty}^{\infty} e^{\frac{-1}{2}(a(x_{0} - \frac{-b}{2a})^{2}} e^{\frac{-1}{2}(c - \frac{b^{2}}{4a})} dx_{0}$$

$$= \hat{\alpha}N(x_{1}, \sigma_{z}^{2})(z_{1}) e^{\frac{-1}{2}(c - \frac{b^{2}}{4a})} \int_{-\infty}^{\infty} e^{\frac{-1}{2}(a(x_{0} - \frac{-b}{2a})^{2}} dx_{0}$$
This is just:
$$N(\frac{-b}{2a}, \frac{1}{a})$$

$$= \hat{\alpha}N(x_{1}, \sigma_{z}^{2})(z_{1}) e^{\frac{-1}{2}(c - \frac{b^{2}}{4a})} \int_{-\infty}^{\infty} e^{\frac{-1}{2}(a(x_{0} - \frac{-b}{2a})^{2}} dx_{0}$$

$$N(\frac{-b}{2a},\frac{1}{a})$$

$$a = \frac{1+\sigma_x^2}{\sigma_x^2}, b = \frac{-2x_1}{\sigma_x^2}, c = \frac{x_1^2}{\sigma_x^2}$$

$$\begin{split} F_1 &= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2}(c - \frac{b^2}{4a})} \int_{-\infty}^{\infty} e^{\frac{-1}{2}(a(x_0 - \frac{-b}{2a})^2} dx_0 \\ &= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2}(c - \frac{b^2}{4a})} \int_{-\infty}^{\infty} N(\frac{-b}{2a}, \frac{1}{a})(x_0) dx_0 \\ &= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2}(c - \frac{b^2}{4a})} \cdot 1 & \text{area under all of normal distribution adds up to 1} \\ &= \frac{-1}{2} (\frac{x_1^2}{\sigma_x^2} - \frac{(-\frac{2x_1}{\sigma_x^2})^2}{4 + \frac{1 + \sigma_x^2}{\sigma_x^2}}) \\ &= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2} (\frac{x_1^2}{\sigma_x^2} - \frac{4x_1^2/\sigma_x^4}{4(1 + \sigma_x^2)/\sigma_x^2})} \cdot 1 \\ &= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2} (\frac{x_1^2(1 + \sigma_x^2)}{\sigma_x^2(1 + \sigma_x^2)} - \frac{x_1^2}{(1 + \sigma_x^2)\sigma_x^2})} \cdot 1 \\ &= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2} (\frac{x_1^2 + \sigma_x^2 x_1^2 - x_1^2}{(1 + \sigma_x^2)\sigma_x^2})} \cdot 1 \\ &= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2} (\frac{x_1^2 + \sigma_x^2 x_1^2 - x_1^2}{(1 + \sigma_x^2)\sigma_x^2})} \cdot 1 \\ &= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2} (\frac{x_1^2 + \sigma_x^2 x_1^2 - x_1^2}{(1 + \sigma_x^2)\sigma_x^2})} \cdot 1 \\ &= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2} (\frac{x_1^2 + \sigma_x^2 x_1^2 - x_1^2}{(1 + \sigma_x^2)\sigma_x^2})} \cdot 1 \\ &= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2} (\frac{x_1^2 + \sigma_x^2 x_1^2 - x_1^2}{(1 + \sigma_x^2)\sigma_x^2})} \cdot 1 \\ &= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2} (\frac{x_1^2 + \sigma_x^2 x_1^2 - x_1^2}{(1 + \sigma_x^2)\sigma_x^2})} \cdot 1 \\ &= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2} (\frac{x_1^2 + \sigma_x^2 x_1^2 - x_1^2}{(1 + \sigma_x^2)\sigma_x^2})} \cdot 1 \\ &= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2} (\frac{x_1^2 + \sigma_x^2 x_1^2 - x_1^2}{(1 + \sigma_x^2)\sigma_x^2})} \cdot 1 \\ &= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2} (\frac{x_1^2 + \sigma_x^2 x_1^2 - x_1^2}{(1 + \sigma_x^2)\sigma_x^2})} \cdot 1 \\ &= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2} (\frac{x_1^2 + \sigma_x^2 x_1^2 - x_1^2}{(1 + \sigma_x^2)\sigma_x^2})} \cdot 1 \\ &= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2} (\frac{x_1^2 + \sigma_x^2 x_1^2 - x_1^2}{(1 + \sigma_x^2)\sigma_x^2})} \cdot 1 \\ &= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2} (\frac{x_1^2 + \sigma_x^2 x_1^2 - x_1^2}{(1 + \sigma_x^2)\sigma_x^2})} \cdot 1 \\ &= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2} (\frac{x_1^2 + \sigma_x^2 x_1^2 - x_1^2}{(1 + \sigma_x^2)\sigma_x^2})} \cdot 1 \\ &= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2} (\frac{x_1^2 + \sigma_x^2 x_1^2 - x_1^2}{(1 + \sigma_x^2)\sigma_x^2})} \cdot 1 \\ &= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2} (\frac{x_1^2 + \sigma_x^$$

$$F_{1} = \hat{\alpha}N(x_{1}, \sigma_{z}^{2})(z_{1})e^{\frac{-1}{2}(\frac{x_{1}^{2}}{1+\sigma_{x}^{2}})}$$

$$= \hat{\alpha}e^{\frac{-1}{2}(\frac{(z_{1}-x_{1})^{2}}{\sigma_{z}^{2}})}e^{\frac{-1}{2}(\frac{x_{1}^{2}}{1+\sigma_{x}^{2}})}$$

$$= \hat{\alpha}e^{\frac{-1}{2}(\frac{(z_{1}-x_{1})^{2}}{\sigma_{z}^{2}} + \frac{x_{1}^{2}}{1+\sigma_{x}^{2}})}$$

$$= \hat{\alpha}e^{\frac{-1}{2}(\frac{(z_{1}-x_{1})^{2}(1+\sigma_{x}^{2})+\sigma_{z}^{2}x_{1}^{2}}{\sigma_{z}^{2}(1+\sigma_{x}^{2})})}ax^{2} + bx + c = a(x - \frac{-b}{2a})^{2} + (c - \frac{b^{2}}{4a})$$

$$= \hat{\alpha}e^{\frac{-1}{2}((\frac{1+\sigma_{x}^{2}+\sigma_{z}^{2}}{\sigma_{z}^{2}(1+\sigma_{x}^{2})})x_{1}^{2} + (-2z_{1}/\sigma_{z}^{2})x_{1} + z_{1}^{2}/\sigma_{z}^{2})}$$

$$= \hat{\alpha}e^{\frac{-1}{2}a(x_{1} - \frac{-b}{2a})^{2} + (c - \frac{b^{2}}{4a})}$$

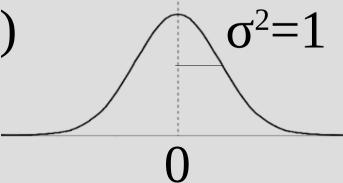
$$= \hat{\alpha}e^{\frac{-1}{2}a(x_{1} - \frac{-b}{2a})^{2} + (c - \frac{b^{2}}{4a})}$$

$$= \hat{\alpha}e^{\frac{-1}{2}a(x_{1} - \frac{-b}{2a})^{2}} \text{ gross after plugging in a,b,c (see book)}$$

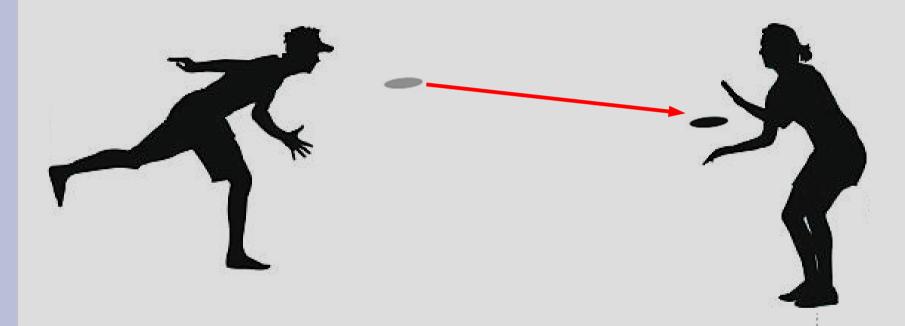
a,b,c (see book)

$$a = \frac{1+\sigma_x^2+\sigma_z^2}{\sigma_z^2(1+\sigma_x^2)}, b = -2z_1/\sigma_z^2, c = z_1^2/\sigma_z^2$$

Initially your friend is N(0,1)



$$a = \frac{1+\sigma_x^2+\sigma_z^2}{\sigma_z^2(1+\sigma_x^2)}, b = -2z_1/\sigma_z^2, c = z_1^2/\sigma_z^2$$

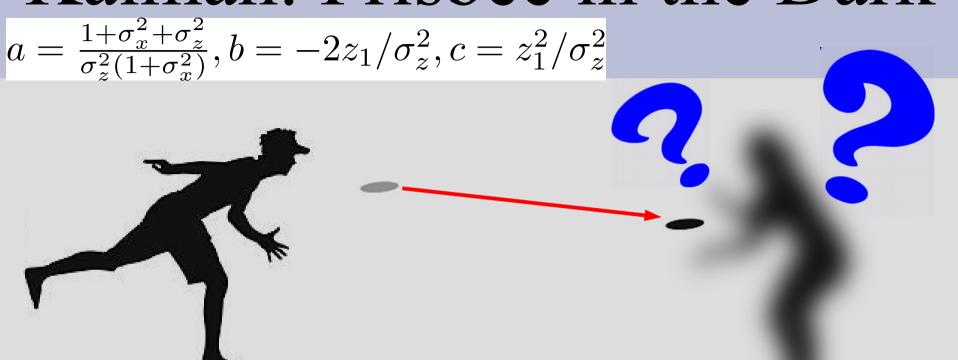


Initially your friend is N(0,1)

Throw not perfect, so friend has to move N(0,1.5)

 $\int_{0}^{\sigma^{2}=1.5}$

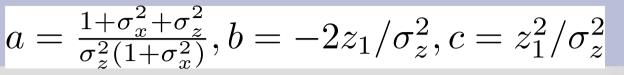
(i.e. move from black to red)

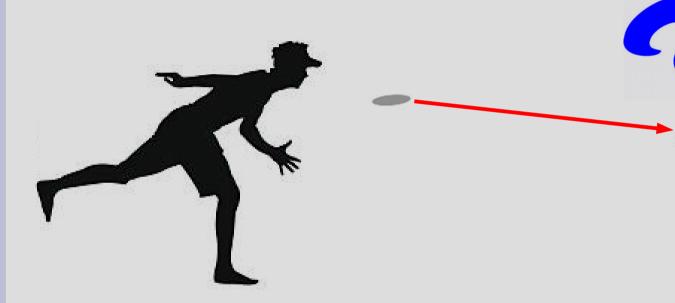


But you can't actually see your friend too clearly in the dark

 $\sigma^2 = 1$ $\sigma^2 = 1.5$

You thought you saw them at $0.75 \ (\sigma^2=0.2)$





Where is your friend actually?

$$F_1 = \hat{\alpha}' e^{\frac{-1}{2}a(x_1 - \frac{-b}{2a})^2}$$

 $\sigma^{2}=0.2$ $\sigma^{2}=1$ $\sigma^{2}=1.5$

$$a = \frac{1 + 1.5 + 0.2}{0.2(1 + 1.5)} = 5.4, b = -2(0.75)/0.2 = -7.5, c = (0.75)^2/0.2 = 2.8125$$

 $\sigma^2 = 0.2$

Where is your friend actually?

$$F_1 = \hat{\alpha}' e^{\frac{-1}{2}a(x_1 - \frac{-b}{2a})^2}$$

=
$$N(\frac{-b}{2a}, \frac{1}{a})$$
 Probably 0.05 0 0.75
= $N(0.694, 0.185)$ "left" of where you "saw" them

So the filtered "forward" message for throw 1 is: N(0.694, 0.185)

To find the filtered "forward" message for throw 2, use N(0.694, 0.185) instead of N(0,1) (this does change the equations as you need to involve a μ for the old N(0,1))

The book gives you the full messy equations:

$$\mu_{t+1} = \frac{(\sigma_t^2 + \sigma_x^2) z_{t+1} + \sigma_z^2 \mu_t}{\sigma_t^2 + \sigma_x^2 + \sigma_z^2} \qquad \sigma_{t+1}^2 = \frac{(\sigma_t^2 + \sigma_x^2) \sigma_z^2}{\sigma_t^2 + \sigma_x^2 + \sigma_z^2}$$

So the filtered "forward" message for throw 1 is: N(0.694, 0.185)

To find the filtered "forward" message for throw 2, use N(0.694, 0.185) instead of N(0,1) (this does change the equations as you need to involve a μ for the old N(0,1))

The book gives you the full messy equations:

$$\mu_{t+1} = \frac{(\sigma_t^2 + \sigma_x^2) z_{t+1} + \sigma_z^2 \mu_t}{\sigma_t^2 + \sigma_x^2 + \sigma_z^2} \qquad \sigma_{t+1}^2 = \frac{(\sigma_t^2 + \sigma_x^2) \sigma_z^2}{\sigma_t^2 + \sigma_x^2 + \sigma_z^2}$$

So the filtered "forward" message for throw 1 is: N(0.694, 0.185)

To find the filtered "forward" message for throw 2, use N(0.694, 0.185) instead of N(0,1) (this does change the equations as you need to involve a μ for the old N(0,1))

The book gives you the full messy equations:

$$\mu_{t+1} = \frac{\sigma_t^2 + \sigma_x^2 + \sigma_z^2 + \sigma_z^2}{\sigma_t^2 + \sigma_x^2 + \sigma_z^2} \qquad \sigma_{t+1}^2 = \frac{\sigma_t^2 + \sigma_x^2 + \sigma_z^2}{\sigma_t^2 + \sigma_x^2 + \sigma_z^2}$$

The full Kalman filter is done with multiple numbers (matrices)

Here a Gaussian is: $N(\mu, \Sigma) = \alpha e^{-\frac{1}{2} \left((x - \mu)^T \Sigma^{-1} (x - \mu) \right)}$

Bayes net is: (F and H are "linear" matrix)

$$P(x_{t+1}|x_t) = N(Fx_t, \Sigma_x)(x_{t+1})$$

$$P(z_t|x_t) = N(Hx_t, \Sigma_z)(z_t)$$
 identity matrix

Then filter update is: $\Sigma_{t+1} = (I - K_{t+1}H)(F\Sigma_t F^T + \Sigma_x)$

$$\mu_{t+1} = F\mu_t + K_{t+1}(z_{t+1} - HF\mu_t)$$
 yikes...

$$K_{t+1} = (F\Sigma_t F^T + \Sigma_x)H^T(H(F\Sigma_t F^T + \Sigma_x)H^T + \Sigma_z)^{-1}$$

Often we use $\begin{bmatrix} x \\ v_x \end{bmatrix}$ for a 1-dimensional problem with both position and velocity

To update x_{t+1} , we would want: $x_{t+1} = x_t + v_x$

In matrix form:

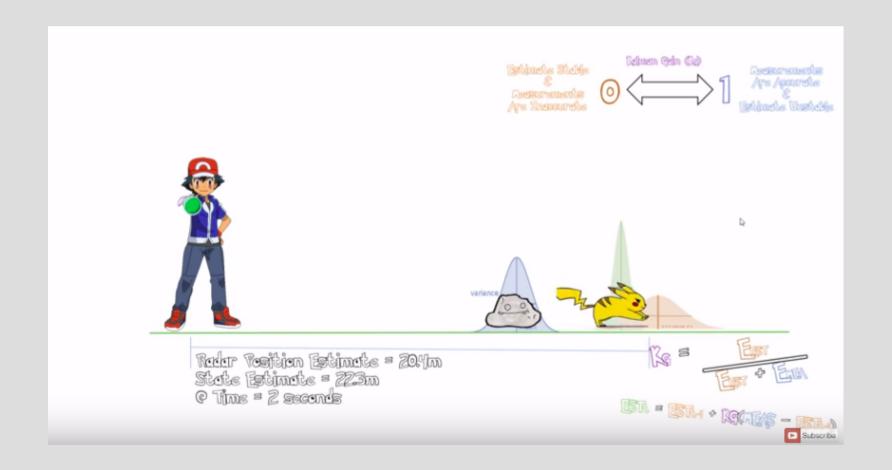
$$P(x_{t+1}|x_t) = N(Fx_t, \Sigma_x)(x_{t+1})$$

$$F = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 so: $Fx_t = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ v_x \end{bmatrix} = \begin{bmatrix} x + v_x \\ v_x \end{bmatrix}$

So our "mean" at t+1 is [our position at x+v_x]

Here's a Pokemon example (not technical)

https://www.youtube.com/watch?v=bm3cwEP2nUo



Downsides?

In order to get "simple" equations, we are limited to the <u>linear Gaussian</u> assumption

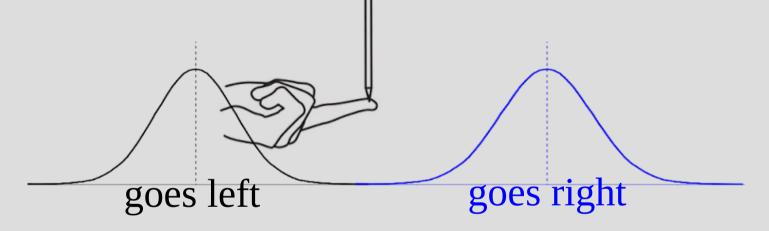
However, there are some cases when this assumption does not work very well at all

Consider the example of balancing a pencil on your finger

How far to the left/right will the pencil fall?

Below is not a good representation:

Instead it should probably look more like:



... where you are deciding between two options, but you are not sure which one

The Kalman filter can handle this as well (just keep 2 sets of equations and use more likely)

Unfortunately if you repeat this "pencil balance" on the new spot... you would need 4 sets of equations

3rd attempt: 8 equations

4th attempt: 16 equations

... this exponential amount of work/memory cannot be done for a large HMM