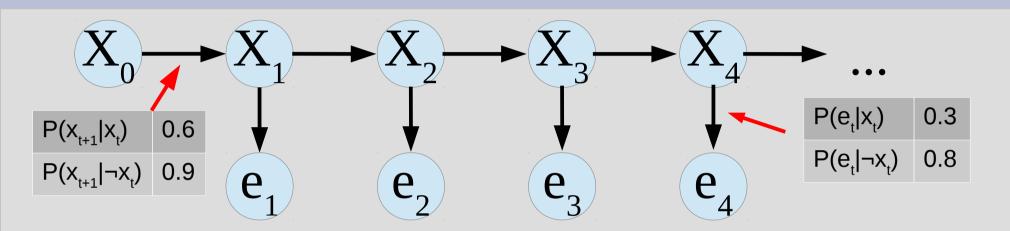
# Kalman Filter (Ch. 15)





We can represent this Bayes net with matrices:  $P(x_{t+1}|x_t) = T = \begin{bmatrix} 0.6 & 0.4 \\ 0.9 & 0.1 \end{bmatrix}$ 

The evidence matrices are more complicated:  $P(e_t|x_t) = E_t = \begin{bmatrix} 0.3 & 0 \\ 0 & 0.8 \end{bmatrix} \quad P(\neg e_t|x_t) = E_t = \begin{bmatrix} 0.7 & 0 \\ 0 & 0.2 \end{bmatrix}$ both just called E, which depends on whether e, or ¬e.

This allows us to represent our filtering eq:

$$f(t) = \alpha P(e_t | x_t) \sum_{x_{t-1}} \left( P(x_t | x_{t-1}) f(t-1) \right)$$

... with matrices:

$$F_{t+1} = \alpha E_{t+1} T^T F_t$$

... why? (1) Gets rid of sum (matrix mult. does this) (2) More easily to "reverse" messages  $F_t = \alpha'(T^T)^{-1}E_{t+1}^{-1}F_{t+1}$ 

This actually gives rise to a smoothing alg. with constant memory (we did with linear):

Smooth (constant mem):

- -1. Compute filtering from 1 to t
- -2. Loop: i=t to 1
- -2.1. Smooth X<sub>i</sub> (have f(i) and backwards(i))
- -2.2. Compute backwards(i-1) in normal way
- -2.3. Compute f(i-1) using previous slide

Smoothing actually has issues with "online" algorithms, where you need results mid-alg.

The stock market is an example as you have historical info and need choose trades today

But tomorrow we will have the info for today as well... need alg to not compute "from scratch"



With smoothing, the "forwards" message is fine, since we start it at f(0) and go to f(t)

We can then compute the "next day" easily as f(t+1) is based off f(t) in our equations

This is not the case for the "backwards" message, as this starts b(t) to get b(t-1)  $b(k) = \sum_{x_{k+1}} P(e_{k+1}|x_{k+1})b(k+1)P(x_{k+1}|x_k)$ As matrix:  $B_k = TE_{k+1}B_{k+1}$ 

The naive way would be to restart the "backwards" message from scratch

I will switch to the book's notation of  $B_{1:t}$ as the backward message that uses  $e_1$  to  $e_t$ (slightly different as  $B_k$  uses  $e_{k+1}$  to  $e_t$ )

Thus we would want some way to compute  $B_{j:t+1}$  from  $B_{k:t}$  without doing it from scrath

#### So we have:

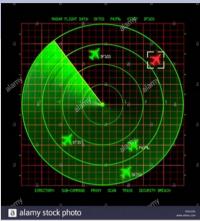
$$B_{1:1} = TE_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad B_{1:2} = TE_1 TE_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad B_{2:2} = TE_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
  
In general: 
$$B_{j:k} = \left(\prod_{i=j}^k TE_i\right) \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

This  $[1,1]^{T}$  matrix is in the way, so let's store:  $\hat{B}_{j:k} = \left(\prod_{i=j}^{k} TE_{i}\right)$ i starts large, then decreases: for(i=j-1; i>=k; i--)

... then:  $\hat{B}_{2:2} = E_1^{-1}T^{-1}\hat{B}_{1:1}TE_2$ ... or generally if j>k:  $\hat{B}_{j:t+1} = (\prod_{i=j-1}^{k} E_i^{-1}T^{-1})\hat{B}_{k:t}TE_{t+1}$ 

# HMMs in Practice

One common place this filtering is used is in position tracking (radar)



The book gives a nice example that is more complex than we have done:

A robot is dropped in a maze (it has a map), but it does not know where...

... additionally, the sensors on the robot does not work well... where is the robot?

# HMMs in Practice

|   | 0 | 0 | 0 | 0 |   | 0 | ο | 0 | 0 | ο |   | 0 | 0 | ο |   | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |   | 0 | 0 |   | 0 |   |   | 0 |   | 0 |   | 0 |   |   |   |
|   |   | 0 | 0 | 0 |   | 0 |   |   | 0 | 0 | 0 | 0 | 0 |   |   | 0 |
| l | 0 | 0 |   | 0 | 0 | 0 |   | 0 | 0 | 0 | 0 |   | 0 | 0 | 0 | 0 |

(a) Posterior distribution over robot location after  $E_1 = NSW$ 

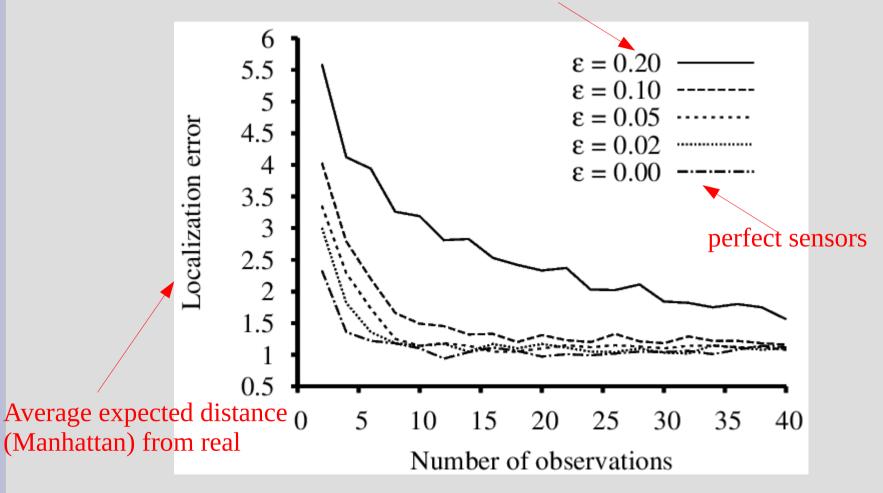
where walls are

| 0 | 0 | 0 | 0 |   | 0 | 0 | 0 | 0 | ο |   | 0 | 0 | 0 |   | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   | 0 | 0 |   | 0 |   |   | 0 |   | 0 |   | 0 |   |   |   |
|   | 0 | 0 | 0 |   | 0 |   |   | 0 | 0 | 0 | 0 | 0 |   |   | ο |
| 0 | 0 |   | 0 | 0 | 0 |   | 0 | 0 | 0 | 0 |   | 0 | 0 | 0 | 0 |

(b) Posterior distribution over robot location after  $E_1 = NSW$ ,  $E_2 = NS$ 

## HMMs in Practice

20% error per direction (1-.8<sup>4</sup>) = 59% at least one error



How does all of this relate to Kalman filters?

This is just "filtering" (in HMM/Bayes net), except with continuous variables

This heavily use the Gaussian distribution:

$$N(\mu, \sigma^2)(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-1}{2}\frac{(x-\mu)^2}{\sigma^2}} = \alpha e^{\frac{-1}{2}\frac{(x-\mu)^2}{\sigma^2}}$$
  
thank you alpha!

Why the preferential treatment for Gaussians?

A key benefit is that when you do our normal operations (add and multiply), if you start with a Gaussian as input, you get Gaussian out

In fact, if you input a <u>linear Gaussian</u> input, you get a Gaussian out: (linear=matrix mult)

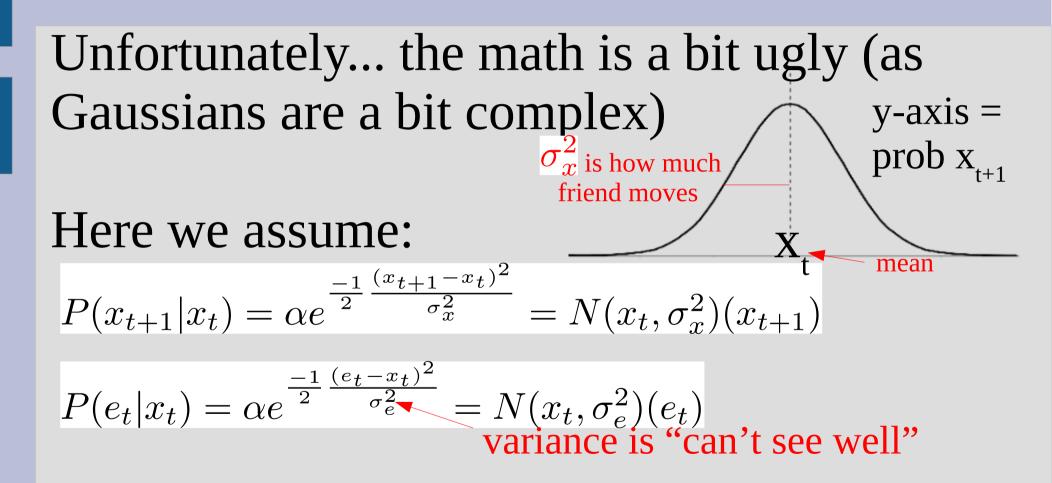
More on this later, let's start simple

As an example, let's say you are playing Frisbee at night

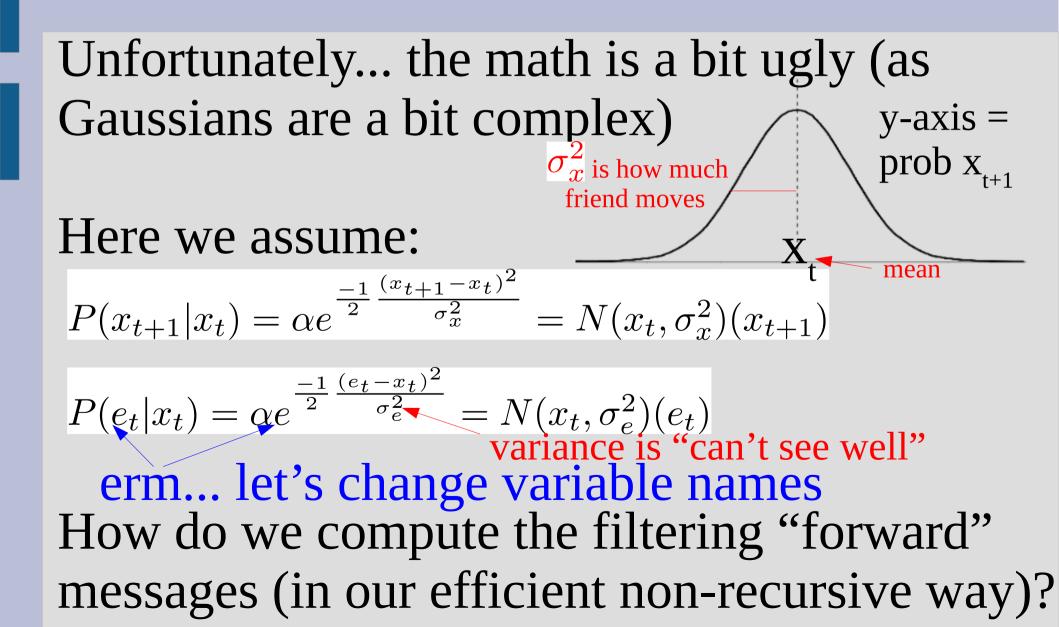
1. Can't see exactly where friend is

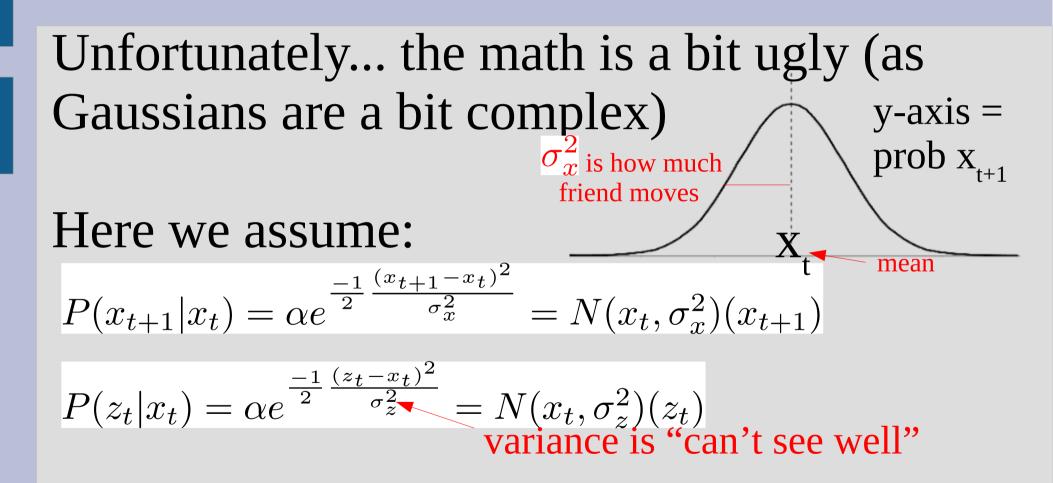
2. Friend willmove slightlyto catch Frisbee



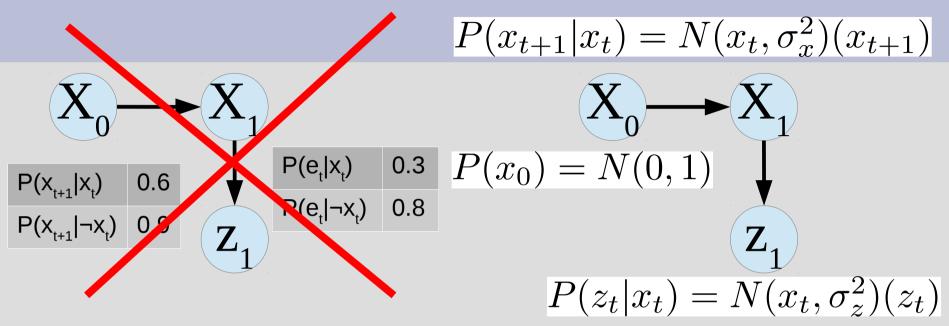


How do we compute the filtering "forward" messages (in our efficient non-recursive way)?





How do we compute the filtering "forward" messages (in our efficient non-recursive way)?



The same? Sorta... but we have to integrate



 $F_1 = P(z_1|x_1) \int_{-\infty}^{\infty} P(x_1|x_0) P(x_0) dx_0$ 

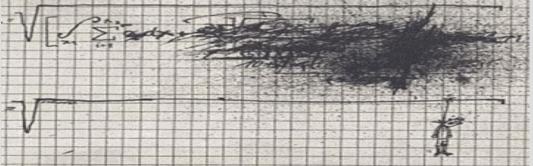
$$F_{1} = P(z_{1}|x_{1}) \int_{-\infty}^{\infty} P(x_{1}|x_{0})P(x_{0})dx_{0}$$

$$= N(x_{1},\sigma_{z}^{2})(z_{1}) \int_{-\infty}^{\infty} N(x_{0},\sigma_{x}^{2})(x_{1}) \cdot N(0,1)(x_{0})dx_{0}$$

$$= N(x_{1},\sigma_{z}^{2})(z_{1}) \int_{-\infty}^{\infty} \alpha e^{\frac{-1}{2}\frac{(x_{1}-x_{0})^{2}}{\sigma_{x}^{2}}} \cdot \alpha' e^{\frac{-1}{2}x_{0}^{2}}dx_{0}$$

$$= \hat{\alpha}N(x_{1},\sigma_{z}^{2})(z_{1}) \int_{-\infty}^{\infty} e^{\frac{-1}{2}\frac{(x_{1}-x_{0})^{2}+\sigma_{x}^{2}x_{0}^{2}}{\sigma_{x}^{2}}}dx_{0}$$

$$= \hat{\alpha}N(x_{1},\sigma_{z}^{2})(z_{1}) \int_{-\infty}^{\infty} e^{\frac{-1}{2}(\frac{(1+\sigma_{x}^{2})}{\sigma_{x}^{2}}x_{0}^{2}+\frac{(-2x_{1})}{\sigma_{x}^{2}}x_{0}+\frac{x_{1}^{2}}{\sigma_{x}^{2}})}dx_{0}$$



#### Kalman Filters Hope you feel

But wait! There's hope!  
We can use a little fact that:  

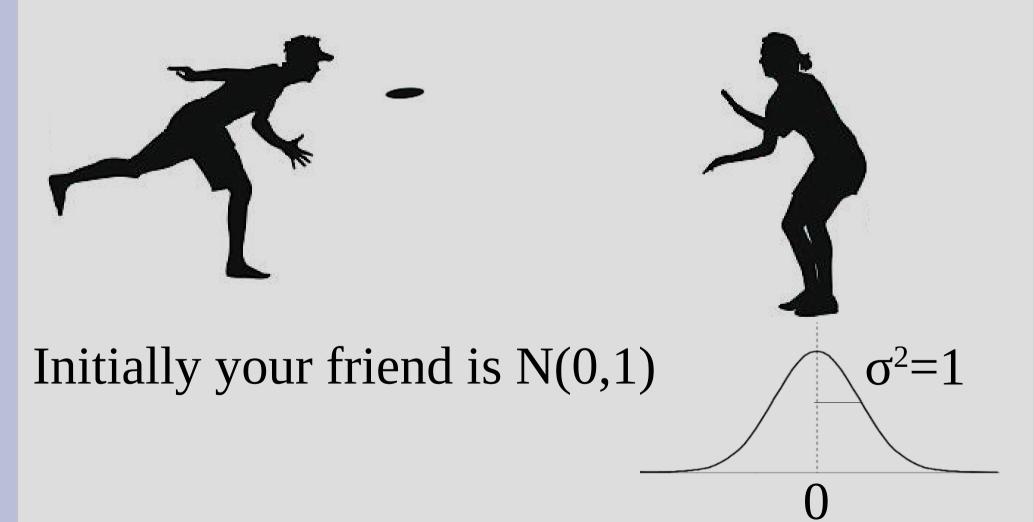
$$ax^{2} + bx + c = a(x - \frac{-b}{2a})^{2} + (c - \frac{b^{2}}{4a})$$
  
does not contain  $x$   
 $F_{1} = \hat{\alpha}N(x_{1}, \sigma_{z}^{2})(z_{1})\int_{-\infty}^{\infty} e^{-\frac{-1}{2}(\frac{(1+\sigma_{x}^{2})}{\sigma_{x}^{2}}x_{0}^{2} + \frac{(-2x_{1})}{\sigma_{x}^{2}}x_{0} + \frac{x_{1}^{2}}{\sigma_{x}^{2}})}$   
 $= \hat{\alpha}N(x_{1}, \sigma_{z}^{2})(z_{1})\int_{-\infty}^{\infty} e^{-\frac{1}{2}(a(x_{0} - \frac{-b}{2a})^{2} + (c - \frac{b^{2}}{4a})}dx_{0}$   
 $= \hat{\alpha}N(x_{1}, \sigma_{z}^{2})(z_{1})\int_{-\infty}^{\infty} e^{-\frac{1}{2}(a(x_{0} - \frac{-b}{2a})^{2}}e^{-\frac{1}{2}(c - \frac{b^{2}}{4a})}dx_{0}$   
 $= \hat{\alpha}N(x_{1}, \sigma_{z}^{2})(z_{1})e^{-\frac{1}{2}(c - \frac{b^{2}}{4a})}\int_{-\infty}^{\infty} e^{-\frac{1}{2}(a(x_{0} - \frac{-b}{2a})^{2}}dx_{0}$ 

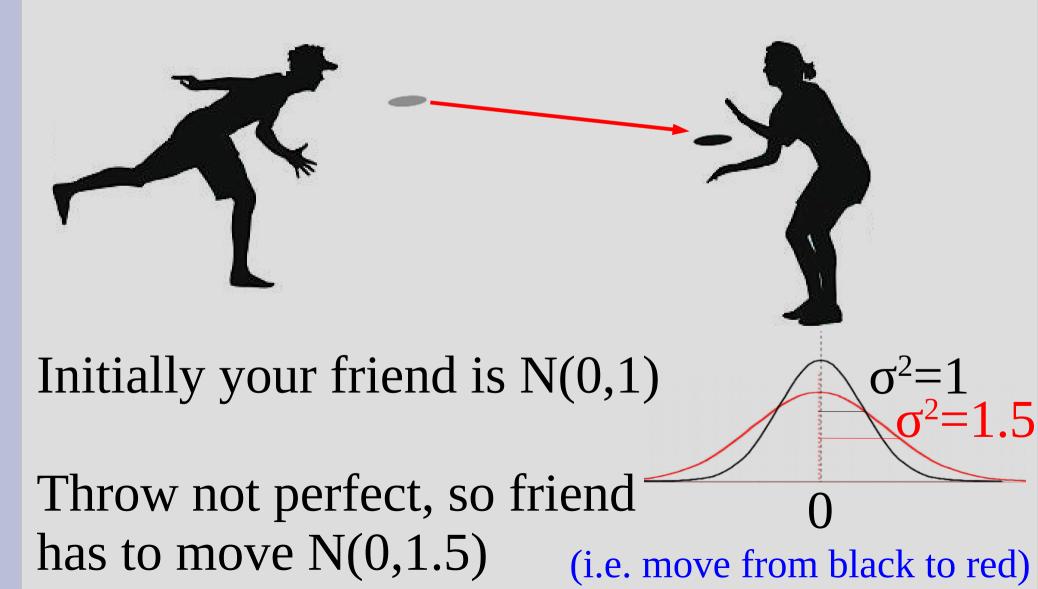
But wait! There's hope!  
We can use a little fact that:  

$$ax^{2} + bx + c = a(x - \frac{-b}{2a})^{2} + (c - \frac{b^{2}}{4a})$$
  
does not contain  $x$   
 $F_{1} = \hat{\alpha}N(x_{1}, \sigma_{z}^{2})(z_{1})\int_{-\infty}^{\infty} e^{\frac{-1}{2}(\frac{(1+\sigma_{x}^{2})}{\sigma_{x}^{2}}x_{0}^{2} + \frac{(-2x_{1})}{\sigma_{x}^{2}}x_{0} + \frac{x_{1}^{2}}{\sigma_{x}^{2}})}$   
 $= \hat{\alpha}N(x_{1}, \sigma_{z}^{2})(z_{1})\int_{-\infty}^{\infty} e^{\frac{-1}{2}(a(x_{0} - \frac{-b}{2a})^{2} + (c - \frac{b^{2}}{4a})}dx_{0}}$   
 $= \hat{\alpha}N(x_{1}, \sigma_{z}^{2})(z_{1})\int_{-\infty}^{\infty} e^{\frac{-1}{2}(a(x_{0} - \frac{-b}{2a})^{2}}e^{\frac{-1}{2}(c - \frac{b^{2}}{4a})}dx_{0}$   
 $= \hat{\alpha}N(x_{1}, \sigma_{z}^{2})(z_{1})e^{\frac{-1}{2}(c - \frac{b^{2}}{4a})}\int_{-\infty}^{\infty} e^{\frac{-1}{2}(a(x_{0} - \frac{-b}{2a})^{2}}dx_{0}$   
This is just:  
 $N(\frac{-b}{2a}, \frac{1}{a})$ 

Kalman Filters  $a = \frac{1 + \sigma_x^2}{\sigma_x^2}, b = \frac{-2x_1}{\sigma_x^2}, c = \frac{x_1^2}{\sigma_x^2}$  $F_1 = \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2}(c - \frac{b^2}{4a})} \int^{\infty} e^{\frac{-1}{2}(a(x_0 - \frac{-b}{2a})^2)} dx_0$  $= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2}(c - \frac{b^2}{4a})} \int_{-\infty}^{\infty} N(\frac{-b}{2a}, \frac{1}{a})(x_0) dx_0$  $= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2}(c - \frac{b^2}{4a})} \cdot 1$ area under all of normal  $= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2}(\frac{x_1^2}{\sigma_x^2} - \frac{(\frac{-2x_1}{\sigma_x^2})^2}{4\frac{1+\sigma_x^2}{\sigma_x^2}})} \mathbf{1}$ distribution adds up to 1  $= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2}(\frac{x_1^2}{\sigma_x^2} - \frac{4x_1^2/\sigma_x^4}{4(1+\sigma_x^2)/\sigma_x^2})} \cdot 1$  $= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2}(\frac{x_1^2(1+\sigma_x^2)}{\sigma_x^2(1+\sigma_x^2)} - \frac{x_1^2}{(1+\sigma_x^2)\sigma_x^2})} \cdot 1$  $= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2} \left(\frac{x_1^2 + \sigma_x^2 x_1^2 - x_1^2}{(1 + \sigma_x^2)\sigma_x^2}\right)} \cdot 1$  $= \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2}(\frac{x_1^2}{1+\sigma_x^2})} \cdot 1$ 

 $F_1 = \hat{\alpha} N(x_1, \sigma_z^2)(z_1) e^{\frac{-1}{2}(\frac{x_1^2}{1+\sigma_x^2})}$  $= \hat{\alpha}e^{\frac{-1}{2}\left(\frac{(z_1-x_1)^2}{\sigma_z^2}\right)}e^{\frac{-1}{2}\left(\frac{x_1^2}{1+\sigma_x^2}\right)}$  $= \hat{\alpha}e^{\frac{-1}{2}\left(\frac{(z_1-x_1)^2}{\sigma_z^2} + \frac{x_1^2}{1+\sigma_x^2}\right)}$  $= \hat{\alpha}e^{\frac{-1}{2}\left(\frac{(z_1-x_1)^2(1+\sigma_x^2)+\sigma_z^2x_1^2}{\sigma_z^2(1+\sigma_x^2)}\right)} ax^2 + bx + c = a\left(x - \frac{-b}{2a}\right)^2 + \left(c - \frac{b^2}{4a}\right)$  $= \hat{\alpha}e^{\frac{-1}{2}\left(\left(\frac{1+\sigma_x^2+\sigma_z^2}{\sigma_z^2(1+\sigma_x^2)}\right)x_1^2 + (-2z_1/\sigma_z^2)x_1 + z_1^2/\sigma_z^2\right)}$  $= \hat{\alpha} e^{\frac{-1}{2}a(x_1 - \frac{-b}{2a})^2 + (c - \frac{b^2}{4a})^2}$  $= \hat{\alpha}e^{\frac{-1}{2}(c-\frac{b^2}{4a})}e^{\frac{-1}{2}a(x_1-\frac{-b}{2a})^2}$  gross after plugging in a,b,c (see book)  $= \hat{\alpha}' e^{\frac{-1}{2}a(x_1 - \frac{-b}{2a})^2}$ 





But you can't actually see your friend too clearly in the dark

You thought you saw them at  $0.75 (\sigma^2=0.2)$ 

 $\sigma^2 = 0.2$ 

### Where is your friend actually?

 $F_1 = \hat{\alpha}' e^{\frac{-1}{2}a(x_1 - \frac{-b}{2a})^2}$ 

# Kalman: Frisbee in the Dark $a = \frac{1+1.5+0.2}{0.2(1+1.5)} = 5.4, b = -2(0.75)/0.2 = -7.5, c = (0.75)^2/0.2 = 2.8125$



 $F_1 = \hat{\alpha}' e^{\frac{-1}{2}a} (x_1 - \frac{-b}{2a})^2$ 

### Where is your friend actually?

 $= N(\frac{-b}{2a}, \frac{1}{a})$  Probably 0.05 0 0.75 = N(0.694, 0.185) 'left' of where you "saw" them

 $\sigma^2 = 0.2$ 

 $^{2}=1.5$ 

So the filtered "forward" message for throw 1 is: N(0.694, 0.185)

To find the filtered "forward" message for throw 2, use N(0.694, 0.185) instead of N(0, 1)(this does change the equations as you need to involve a µ for the old N(0, 1))

The book gives you the full messy equations:  $\mu_{t+1} = \frac{(\sigma_t^2 + \sigma_x^2)z_{t+1} + \sigma_z^2 \mu_t}{\sigma_t^2 + \sigma_x^2 + \sigma_z^2} \qquad \sigma_{t+1}^2 = \frac{(\sigma_t^2 + \sigma_x^2)\sigma_z^2}{\sigma_t^2 + \sigma_x^2 + \sigma_z^2}$ 

So the filtered "forward" message for throw 1 is: N(0.694, 0.185)

To find the filtered "forward" message for throw 2, use N(0.694, 0.185) instead of N(0, 1)(this does change the equations as you need to involve a µ for the old N(0, 1))

The book gives you the full messy equations:  $\mu_{t+1} = \frac{(\sigma_t^2 + \sigma_x^2)z_{t+1} + \sigma_z^2 \mu_t}{\sigma_t^2 + \sigma^2 + \sigma^2} \qquad \sigma_{t+1}^2 = \frac{(\sigma_t^2 + \sigma_x^2)\sigma_z^2}{\sigma_t^2 + \sigma^2 + \sigma^2}$ 

So the filtered "forward" message for throw 1 is: N(0.694, 0.185)

To find the filtered "forward" message for throw 2, use N(0.694, 0.185) instead of N(0, 1)(this does change the equations as you need to involve a µ for the old N(0, 1))

The book gives you the full messy equations:  $\mu_{t+1} = \frac{\sigma_t^2 + \sigma_x^2 z_{t+1} + \sigma_z^2 \mu_t}{\sigma_t^2 + \sigma_x^2 + \sigma_z^2} \qquad \sigma_{t+1}^2 = \frac{\sigma_t^2 + \sigma_x^2 z_t^2}{\sigma_t^2 + \sigma_x^2 + \sigma_z^2}$ 

The full Kalman filter is done with multiple numbers (matrices)

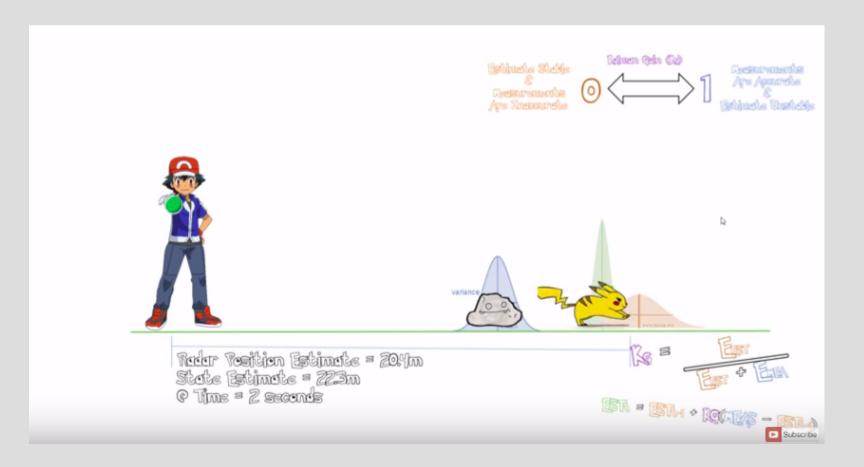
Here a Gaussian is:  $N(\mu, \Sigma) = \alpha e^{-\frac{1}{2} \left( (x-\mu)^T \Sigma^{-1} (x-\mu) \right)}$ Bayes net is: (F and H are "linear" matrix)  $P(x_{t+1}|x_t) = N(Fx_t, \Sigma_x)(x_{t+1})$ identity matrix  $P(z_t | x_t) = N(Hx_t, \Sigma_z)(z_t)$ Then filter update is:  $\Sigma_{t+1} = (I - K_{t+1}H)(F\Sigma_t F^T + \Sigma_x)$  $\mu_{t+1} = F\mu_t + K_{t+1}(z_{t+1} - HF\mu_t)$ yikes...  $K_{t+1} = (F\Sigma_t F^T + \Sigma_x) H^T (H(F\Sigma_t F^T + \Sigma_x) H^T + \Sigma_z)^{-1}$ 

Often we use  $\begin{bmatrix} x \\ v_x \end{bmatrix}$  for a 1-dimensional problem with both position and velocity

To update  $x_{t+1}$ , we would want:  $x_{t+1} = x_t + v_x$ 

In matrix form:  $P(x_{t+1}|x_t) = N(Fx_t, \Sigma_x)(x_{t+1})$   $F = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad \text{so:} \quad Fx_t = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ v_x \end{bmatrix} = \begin{bmatrix} x + v_x \\ v_x \end{bmatrix}$ So our "mean" at t+1 is [our position at x+v\_]

#### Here's a Pokemon example (not technical) https://www.youtube.com/watch?v=bm3cwEP2nUo



Downsides?

In order to get "simple" equations, we are limited to the <u>linear Gaussian</u> assumption

However, there are some cases when this assumption does not work very well at all

Consider the example of balancing a pencil on your finger

How far to the left/right will the pencil fall?

Below is not a good representation:

#### Instead it should probably look more like:

... where you are deciding between two options, but you are not sure which one

goes left

The Kalman filter can handle this as well (just keep 2 sets of equations and use more likely)

goes right

Unfortunately if you repeat this "pencil balance" on the new spot... you would need 4 sets of equations

3<sup>rd</sup> attempt: 8 equations 4<sup>th</sup> attempt: 16 equations ... this exponential amount of work/memory cannot be done for a large HMM