
Kalman Filter
(Ch. 15)



HMMs and Matrices

We can represent this Bayes net with matrices:

The evidence matrices are more complicated:
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HMMs and Matrices

This allows us to represent our filtering eq:

... with matrices:

... why?
(1) Gets rid of sum (matrix mult. does this)
(2) More easily to “reverse” messages



HMMs and Matrices

This actually gives rise to a smoothing alg.
with constant memory (we did with linear):

Smooth (constant mem):
-1. Compute filtering from 1 to t
-2. Loop: i=t to 1
-2.1. Smooth X

i
 (have f(i) and backwards(i))

-2.2. Compute backwards(i-1) in normal way
-2.3. Compute f(i-1) using previous slide



HMMs and Matrices

Smoothing actually has issues with “online”
algorithms, where you need results mid-alg.

The stock market is an example as you have
historical info and need choose trades today

But tomorrow we will
have the info for today
as well... need alg to not 
compute “from scratch”



HMMs and Matrices

With smoothing, the “forwards” message is
fine, since we start it at f(0) and go to f(t)

We can then compute the “next day” easily
as f(t+1) is based off f(t) in our equations

This is not the case for the “backwards”
message, as this starts b(t) to get b(t-1)

As matrix:



HMMs and Matrices

The naive way would be to restart the 
“backwards” message from scratch

I will switch to the book’s notation of B
1:t

as the backward message that uses e
1
 to e

t

(slightly different as B
k
 uses e

k+1
 to e

t
)

Thus we would want some way to compute
B

j:t+1
 from B

k:t
 without doing it from scrath



HMMs and Matrices

So we have:

In general:

This [1,1]T matrix is in the way, so let’s store:

... then:

... or generally if j>k:

i starts large,
then decreases:
for(i=j-1; i>=k; i--)



HMMs in Practice

One common place this filtering is 
used is in position tracking (radar)

The book gives a nice example that is more
complex than we have done:

A robot is dropped in a maze (it has a map),
but it does not know where...
... additionally, the sensors on the robot does
not work well... where is the robot?



HMMs in Practice

where walls are



HMMs in Practice

Average expected distance
(Manhattan) from real

perfect sensors

20% error per direction
(1-.84) = 59% at least one error



Kalman Filters

How does all of this relate to Kalman filters?

This is just “filtering” (in HMM/Bayes net),
except with continuous variables

This heavily use the Gaussian distribution:

thank you alpha!



Kalman Filters

Why the preferential treatment for Gaussians? 

A key benefit is that when you do our normal 
operations (add and multiply), if you start
with a Gaussian as input, you get Gaussian out

In fact, if you input a linear Gaussian input,
you get a Gaussian out: (linear=matrix mult)

More on this later, let’s start simple



Kalman Filters

As an example, let’s say you are playing
Frisbee at night

1. Can’t see
 exactly where
 friend is

2. Friend will
 move slightly
 to catch Frisbee



Kalman Filters

Unfortunately... the math is a bit ugly (as
Gaussians are a bit complex)

Here we assume:

How do we compute the filtering “forward”
messages (in our efficient non-recursive way)?

x
t

y-axis =
prob x

t+1    is how much 
friend moves

mean

variance is “can’t see well”



Kalman Filters

Unfortunately... the math is a bit ugly (as
Gaussians are a bit complex)

Here we assume:

How do we compute the filtering “forward”
messages (in our efficient non-recursive way)?

x
t

y-axis =
prob x

t+1    is how much 
friend moves

mean

variance is “can’t see well”
erm... let’s change variable names



Kalman Filters

Unfortunately... the math is a bit ugly (as
Gaussians are a bit complex)

Here we assume:

How do we compute the filtering “forward”
messages (in our efficient non-recursive way)?

x
t

y-axis =
prob x

t+1    is how much 
friend moves

mean

variance is “can’t see well”



Kalman Filters

The same? Sorta... but we have to integrate
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Kalman Filters



Kalman Filters

But wait! There’s hope!
We can use a little fact that:



Kalman Filters

But wait! There’s hope!
We can use a little fact that:

This is just:



Kalman Filters

area under all of normal 
distribution adds up to 1



Kalman Filters

gross after plugging in
a,b,c (see book)



Kalman: Frisbee in the Dark

0

σ2=1Initially your friend is N(0,1)



0

σ2=1Initially your friend is N(0,1)

Throw not perfect, so friend
has to move N(0,1.5)

σ2=1.5

(i.e. move from black to red)

Kalman: Frisbee in the Dark



0

σ2=1But you can’t actually see your 
friend too clearly in the dark

You thought you saw them at 0.75 (σ2=0.2)

σ2=1.5

Kalman: Frisbee in the Dark



0

σ2=1Where is your friend actually?
σ2=1.5

σ2=0.2

0.75

Kalman: Frisbee in the Dark



0

σ2=1Where is your friend actually?
σ2=1.5

σ2=0.2

0.75Probably 0.05
“left” of where you “saw” them

Kalman: Frisbee in the Dark



Kalman Filters

So the filtered “forward” message for 
throw 1 is: 

To find the filtered “forward” message for
throw 2,  use                  instead of
(this does change the equations as you need
to involve a μ for the old          )

The book gives you the full messy equations:
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Kalman Filters

So the filtered “forward” message for 
throw 1 is: 

To find the filtered “forward” message for
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(this does change the equations as you need
to involve a μ for the old          )

The book gives you the full messy equations:



Kalman Filters

The full Kalman filter is done with multiple
numbers (matrices)

Here a Gaussian is:
Bayes net is: (F and H are “linear” matrix)

Then filter update is:

covariance matrix

identity matrix

yikes...



Kalman Filters

Often we use       for a 1-dimensional
problem with both position and velocity

To update x
t+1

, we would want:

In matrix form:

so:

So our “mean” at t+1 is [our position at x+v
x
]



Kalman Filters

Here’s a Pokemon example (not technical)
https://www.youtube.com/watch?v=bm3cwEP2nUo



Kalman Filters

Downsides?

In order to get “simple” equations, we are 
limited to the linear Gaussian assumption

However, there are some cases when this
assumption does not work very well at all



Kalman Filters

Consider the example of balancing a pencil
on your finger

How far to the left/right will the pencil fall?

Below is not a good representation:

https://www.youtube.com/watch?v=bm3cwEP2nUo


Kalman Filters

Instead it should probably look more like:

... where you are deciding between two
options, but you are not sure which one

The Kalman filter can handle this as well (just 
keep 2 sets of equations and use more likely)

goes left goes right



Kalman Filters

Unfortunately if you repeat this “pencil 
balance” on the new spot... you would need
4 sets of equations

3rd attempt: 8 equations
4th attempt: 16 equations
... this exponential amount of work/memory
cannot be done for a large HMM
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