Hidden Markov Model (Ch. 15)

So in this Bayesian network (bigger): Most $P(X_{0:t}, E_{1:t}) = P(X_0) \prod_{i=1}^{t} P(X_i | X_{i-1}) P(E_i | X_i)$ Explanation Typically, use above to compute four things:

FilteringPredictionSmoothingMLEV $P(x_t|e_{1:t})$ $P(x_{t+k}|e_{1:t})$ $P(x_k|e_{1:t}), k < t$ $P(x_{1:t}|e_{1:t})$

Quick recap...

"Filtering"? "Smoothing"?

Filtering:
$$P(x_t|e_{1:t})$$
 $f(0) = P(x_0)$
 $f(t) = \alpha P(e_t|x_t) \sum_{x_{t-1}} \left(P(x_t|x_{t-1})f(t-1) \right)$ Compute $P(\neg x_1|\neg e_1)$
 $P(x_1|\neg e_1) = \alpha(1-0.3) \cdot (0.6 \cdot 0.5 + 0.9 \cdot 0.5) \approx 0.913$
 $P(x_2|\neg e_1, \neg e_2) = \alpha(1-0.3)(0.6 \cdot 0.913 + 0.9 \cdot (1-0.913)) \approx 0.854$

 $P(x_2|\neg e_1, \neg e_2) = \alpha P(x_2, \neg e_1, \neg e_2)$ $= \alpha \sum \sum P(x_0, x_1, x_2 \neg e_1, \neg e_2)$ x_0 x_1 $= \alpha \sum \sum P(x_0) P(x_1|x_0) P(\neg e_1|x_1) P(x_2|x_1) P(\neg e_2|x_2)$ x_0 $= \alpha \sum \sum P(\neg e_2 | x_2) P(x_2 | x_1) P(\neg e_1 | x_1) P(x_0) P(x_1 | x_0)$ $P(x_1|e_1)$, last message x_1 x_0 $= \alpha P(\neg e_2 | x_2) \sum P(x_2 | x_1) P(\neg e_1 | x_1) \sum P(x_0) P(x_1 | x_0)$ $= \alpha P(\neg e_2 | x_2) \left(P(x_2 | x_1) \cdot 0.913 + P(x_2 | \neg x_1) \cdot (1 - 0.913) \right)$ $= \alpha(1 - 0.3)(0.6 \cdot 0.913 + 0.9 \cdot (1 - 0.913))$ $\approx 0.438\alpha$

... after normalizing you should get: ≈ 0.854

 $P(x_2|\neg e_1, \neg e_2, e_3) = \alpha P(x_2, \neg e_1, \neg e_2, e_3)$ $= \alpha \sum \sum \sum P(x_0, x_1, x_2, x_3, \neg e_1, \neg e_2, e_3)$ $x_0 \quad x_1 \quad x_3$ $= \alpha \sum \sum \sum P(x_0) P(x_1|x_0) P(\neg e_1|x_1) P(x_2|x_1) P(\neg e_2|x_2) P(x_3|x_2) P(e_3|x_2)$ $x_0 \quad x_1 \quad x_3$ $= \alpha \sum \sum \sum P(e_3|x_3) P(x_3|x_2) P(\neg e_2|x_2) P(x_2|x_1) P(\neg e_1|x_1) P(x_0) P(x_1|x_0)$ $x_3 \ x_1 \ x_0$ $= \alpha \sum P(e_3|x_3) P(x_3|x_2) P(\neg e_2|x_2) \sum P(x_2|x_1) P(\neg e_1|x_1) \sum P(x_0) P(x_1|x_0)$ $= \alpha \sum P(e_3|x_3) P(x_3|x_2) P(x_2|\neg e_1, \neg e_2)$ x_3 $P(\neg x_2 | \neg e_1, \neg e_2, e_3)$ $\approx \alpha \left(0.3 \cdot 0.6 \cdot 0.854 + 0.8 \cdot (1 - 0.6) \cdot 0.854 \right)$ $\approx \alpha 0.3 \cdot 0.9 \cdot (1 - 0.854) + 0.8 \cdot (1 - 0.9) \cdot (1 - 0.854)$ $\neg x_3, x_3 = false$ $x_3, x_3 = true$ $\approx 0.0511 \alpha$ $\approx 0.427 \alpha$

... after normalizing, $P(x_2|\neg e_1, \neg e_2, e_3) \approx 0.89311$

Find: $P(x_2 | \neg e_1, \neg e_2, e_3, e_4)$

 $P(x_2|\neg e_1, \neg e_2, e_3, e_4) = \alpha P(x_2, \neg e_1, \neg e_2, e_3, e_4)$

- $= \alpha \sum_{x_0} \sum_{x_1} \sum_{x_3} \sum_{x_4} P(x_0, x_1, x_2, x_3, x_4, \neg e_1, \neg e_2, e_3, e_4)$
- $= \alpha \sum_{x_0} \sum_{x_1} \sum_{x_3} \sum_{x_4} P(x_0) P(x_1 | x_0) P(\neg e_1 | x_1) P(x_2 | x_1) P(\neg e_2 | x_2) P(x_3 | x_2) P(e_3 | x_2) P(x_4 | x_3) P(e_4 | x_4)$
- $= \alpha \sum_{x_4} \sum_{x_3} \sum_{x_1} \sum_{x_0} P(e_4|x_4) P(x_4|x_3) P(e_3|x_3) P(x_3|x_2) P(\neg e_2|x_2) P(x_2|x_1) P(\neg e_1|x_1) P(x_0) P(x_1|x_0)$
- $= \alpha \sum_{x_4} P(e_4|x_4) \sum_{x_3} P(x_4|x_3) P(e_3|x_3) P(x_3|x_2) P(\neg e_2|x_2) \sum_{x_1} P(x_2|x_1) P(\neg e_1|x_1) \sum_{x_0} P(x_0) P(x_1|x_0)$ $= \alpha \sum_{x_4} P(e_4|x_4) \sum_{x_3} P(x_4|x_3) P(e_3|x_3) P(x_3|x_2) P(x_2|\neg e_1, \neg e_2)$

 $P(x_2|\neg e_1, \neg e_2, e_3, e_4) = \alpha P(x_2, \neg e_1, \neg e_2, e_3, e_4)$

- $= \alpha \sum_{x_0} \sum_{x_1} \sum_{x_3} \sum_{x_4} P(x_0, x_1, x_2, x_3, x_4, \neg e_1, \neg e_2, e_3, e_4)$
- $= \alpha \sum_{x_0} \sum_{x_1} \sum_{x_3} \sum_{x_4} P(x_0) P(x_1 | x_0) P(\neg e_1 | x_1) P(x_2 | x_1) P(\neg e_2 | x_2) P(x_3 | x_2) P(e_3 | x_2) P(e_4 | x_3) P(e_4 | x_4)$
- $= \alpha \sum_{x_4} \sum_{x_3} \sum_{x_1} \sum_{x_0} P(e_4|x_4) P(x_4|x_3) P(e_3|x_3) P(x_3|x_2) P(\neg e_2|x_2) P(x_2|x_1) P(\neg e_1|x_1) P(x_0) P(x_1|x_0)$
- $= \alpha \sum_{x_4} P(e_4|x_4) \sum_{x_3} P(x_4|x_3) P(e_3|x_3) P(x_3|x_2) P(\neg e_2|x_2) \sum_{x_1} P(x_2|x_1) P(\neg e_1|x_1) \sum_{x_0} P(x_0) P(x_1|x_0)$

$$= \alpha \sum P(e_4|x_4) \sum P(x_4|x_3) P(e_3|x_3) P(x_3|x_2) P(x_2|\neg e_1, \neg e_2)$$

This term was not in our last calculati

Instead, lets put x_A sum inside x_3 sum: $P(x_2|\neg e_1, \neg e_2, e_3, e_4) = \alpha \sum P(e_4|x_4) \sum P(x_4|x_3) P(e_3|x_3) P(x_3|x_2) P(x_2|\neg e_1, \neg e_2)$ $= \alpha P(x_2 | \neg e_1, \neg e_2) \sum P(e_3 | x_3) P(x_3 | x_2) \sum P(e_4 | x_4) P(x_4 | x_3)$ x_{4} So... similarly if we knew e₅: $P(x_2|\neg e_1, \neg e_2, e_3, e_4, e_5) = \alpha P(x_2|\neg e_1, \neg e_2) \sum P(e_3|x_3) P(x_3|x_2) \sum P(e_4|x_4) P(x_4|x_3) \sum P(e_5|x_5) P(x_5|x_4) P(x_5|x_4) P(x_5|x_5) P(x_5|x_5)$ <u>*x*</u>₅ calc first This time the "inner most" is for large t's, so rather than a "forward" message, it's a "backwards" message (starting with large t)

D(a b) - D(a|b)D(b)

$$P(x_{k}|e_{1:t}) = P(x_{k}|e_{1:k}, e_{k+1:t})$$
 (with a conditional everywhere)

$$= \alpha P(x_{k}, e_{k+1:t}|e_{1:k})$$

$$= \alpha P(e_{k+1:t}|x_{k}, e_{1:k}) P(x_{k}|e_{1:k})$$

$$= \alpha P(e_{k+1:t}|x_{k}) P(x_{k}|e_{1:k})$$

$$\begin{array}{l} \dots \text{ where:} \\
P(e_{k+1:t}|x_k) &= \sum_{x_{k+1}} P(e_{k+1:t}, x_{k+1}|x_k) \\
&= \sum_{x_{k+1}} P(e_{k+1:t}|x_{k+1}, x_k) P(x_{k+1}|x_k) \\
&= \sum_{x_{k+1}} P(e_{k+1}, e_{k+2:t}|x_{k+1}) P(x_{k+1}|x_k) \\
&= \sum_{x_{k+1}} P(e_{k+1}|x_{k+1}) P(e_{k+2:t}|x_{k+1}, e_{k+1}) P(x_{k+1}|x_k) \\
&= \sum_{x_{k+1}} P(e_{k+1}|x_{k+1}) P(e_{k+2:t}|x_{k+1}) P(x_{k+1}|x_k)
\end{aligned}$$

P(a h) = P(a|h)D(h)

$$P(x_{k}|e_{1:t}) = P(x_{k}|e_{1:k}, e_{k+1:t})$$
 (with a conditional everywhere)

$$= \alpha P(x_{k}, e_{k+1:t}|e_{1:k})$$

$$= \alpha P(e_{k+1:t}|x_{k}, e_{1:k}) P(x_{k}|e_{1:k})$$

$$= \alpha P(e_{k+1:t}|x_{k}) P(x_{k}|e_{1:k})$$

$$P(e_{k+1:t}|x_k) = \sum_{x_{k+1}} P(e_{k+1:t}, x_{k+1}|x_k)$$

$$= \sum_{x_{k+1}} P(e_{k+1:t}|x_{k+1}, x_k) P(x_{k+1}|x_k)$$

$$= \sum_{x_{k+1}} P(e_{k+1}, e_{k+2:t}|x_{k+1}) P(x_{k+1}|x_k)$$
recursive
$$= \sum_{x_{k+1}} P(e_{k+1}|x_{k+1}) P(e_{k+2:t}|x_{k+1}, e_{k+1}) P(x_{k+1}|x_k)$$

$$= \sum_{x_{k+1}} P(e_{k+1}|x_{k+1}) P(e_{k+2:t}|x_{k+1}) P(x_{k+1}|x_k)$$

Thus for smoothing we have a recursive func:

$$b(k) = \sum_{x_{k+1}} P(e_{k+1}|x_{k+1})b(k+1)P(x_{k+1}|x_k)$$

... where: b(t) = < 1, 1 >

Then the final smoothing is:unlike examples $P(x_k|e_{1:t}) = \alpha f(t) * b(t)$ only need tonormalize at end

... where you take the point-wise product of f(t) and b(t) (i.e. $< f_{true} * b_{true}, f_{false} * b_{false} >$

Side note: for smoothing it takes O(n) to compute for a single x_n

If you wanted to compute for all days (n of them) it would take $O(n^2)$

However you can get it in O(n) ($\approx 2n$) if you compute all backwards messages: $b(n) \dots b(1)$ and all forward: $f(1), \dots f(n)$ Then do on day i you have: $\alpha * f(i) * b(i)$

One more to go....

So far we have been looking at probabilities of individual x_ns being true/false

What if we wanted to know the most likely explanation on a single day/x_n , but for all?

So far we have been looking at probabilities of individual x_ns being true/false

What if we wanted to know the most likely explanation on a single day/x_n , but for all?

Unfortunately... you cannot use smoothing on each day individually (as we summed over other days in individual calculation)

Consider this example:

bad rounding (not enough space)Using smoothing this would give:F: <1,0> <0.08, 0.92> <0.55,0.45> <1, 0>B:<something> <0.92,0.08> <0.47, 0.53>S: <1,0> <0.52, 0.48> <0.52, 0.48> <1,0>

S: <1,0><0.52, 0.48><0.52, 0.48><1,0>So using smoothing we get: $x_1=$ true, $x_2=$ true, $x_3=$ true, $x_4=$ true... ... This is very wrong (x_2 or x_3 should be false)

We want to max (all variables):

 $\max_{x_0, x_1, x_2} P(x_0, x_1, x_2 | \neg e_1, e_2) = \alpha \max_{x_0} \max_{x_1} \max_{x_2} P(x_0) P(x_1 | x_0) P(\neg e_1 | x_1) P(x_2 | x_1) P(e_2 | x_2)$

Most Likely Explanation This setup should look very familiar $\max_{x_0,x_1,x_2} P(x_0,x_1,x_2|\neg e_1,e_2) = \alpha \max_{x_0} \max_{x_1} \max_{x_2} P(x_0)P(x_1|x_0)P(\neg e_1|x_1)P(x_2|x_1)P(e_2|x_2)$ $= \alpha \max_{x_2} \max_{x_1} \max_{x_0} P(e_2|x_2)P(x_2|x_1)P(\neg e_1|x_1)P(x_1|x_0)P(x_0)$

 $= \alpha \max_{x_2} P(e_2|x_2) \max_{x_1} P(x_2|x_1) P(\neg e_1|x_1) \max_{x_0} P(x_1|x_0) P(x_0)$

Most Likely Explanation This setup should look very familiar $\max_{x_0, x_1, x_2} P(x_0, x_1, x_2 | \neg e_1, e_2) = \alpha \max_{x_0} \max_{x_1} \max_{x_2} P(x_0) P(x_1 | x_0) P(\neg e_1 | x_1) P(x_2 | x_1) P(e_2 | x_2)$ x_0, x_1, x_2 $= \alpha \max_{x_1} \max_{x_2} \max_{x_2} P(e_2|x_2) P(x_2|x_1) P(\neg e_1|x_1) P(x_1|x_0) P(x_0)$ x_1 x_2 $= \alpha \max_{x_2} P(e_2|x_2) \max_{x_1} P(x_2|x_1) P(\neg e_1|x_1) \max_{x_0} P(x_1|x_0) P(x_0)$

It's just filtering with max instead of sum!

So we can re-use our forward message trick, only slightly modified Side note: max functions a lot like sum(linear)

 First find the best explanation for $X_0 \rightarrow X_1$
 $x_1 : P(\neg e_1 | x_1) \max_{x_0} P(x_0) P(x_1 | x_0)$
 $0.99 \max(\underbrace{0.5 \cdot 0.9}_{x_0}, \underbrace{0.5 \cdot 1}_{\neg x_0})$

 0.99(0.5) = 0.495

So, best way to x_1 is pos $\neg x_0$, way to $\neg x_1$ is x_0

0.5

 $P(x_0)$

0.5

 $P(x_0)$

0.5

 $P(x_0)$

0.5

 $P(x_0)$

0.5

 $P(x_0)$

0.5

P(x₀) 0.5

Finish this example:

 $P(x_0) = 0.5$

Should get:

From here, you just find whether x_4 or $\neg x_4$ has a larger number (here it is x_4 =true in black) trace in pink

Then trace the path back (two options here since a tie... I will go with top number max)

So the most likely sequence is: $[\neg x_0, x_1, \neg x_2, x_3, x_4]$ (tied with the sequence: $[\neg x_0, x_1, x_2, \neg x_3, x_4]$) (Side note: this algorithm is called the "Viterbi algorithm"...)

Done and done!