
Uncertainty (Ch. 13)



Representation

Robots quite often do not know everything
about problem (uncertainty):

- partial observability
- non-deterministic actions 

For example, if you were making a poker AI:
1. You cannot see the other player’s cards,

so you have to reason without that info
2. When you draw/exchange cards, you do 

not know what new card you will get



Representation

One simple way is to use belief states and
track each possible outcome

This is quite often too burdensome as:
1. Large number of possible states
2. Would need to plan/decide for each state
3. Possible that no single plan is guaranteed

to exist (very true in “games of chance”)

1 & 2 especially annoying for low probability



Representation

We also need to reason on affects of actions or
the info that we do have

Logic would be one possibility, but often does
not work well with uncertainty

Consider: your friend sat down next to you
and has wet hair... you guess they 
got out of the shower recently



Representation

This however is a bit simplistic

There could be other reasons for wet hair...

This should include all possible outcomes,
yet be able to combine knowledge:

If everyone has wet hair, probably rain



Representation

Explicitly writing out all possibilities:
1. Makes it more difficult to reason/deduce

(for tractability, ignore “unlikely” reasons)
2. Some rules or the exact requirements of

rules might not be known

For all these reasons, using logical inference
with uncertainty can be cumbersome

Instead, probabilistic reasoning works better



Probability

Quite often when dealing with probability,
it is useful to evaluate how good outcomes are

For example, studying for tests:
You do not know what will be asked, 
so you have to guess what topics to review

At some point, you feel “confident enough”
about the material and stop



Probability

Often it is not even possible to have a 100%
chance of success (e.g. cannot win every hand
of poker or ace every test)

Instead, if we have a utility or value for states,
we will try to achieve the maximum expected
utility Percent Utility/Value

Gamble 99%
1%

0
100

Go home 100% 10



Probability

The maximum expected utility can be thought
of as the “best on average” (expectation of
a random variable)

For the rest of today, we will go over some
probability basics (will use a lot in this class)



Probability: the basics

A probability of an event (or proposition) is:

For example, the probability that a 6-sided
die rolls up odd is:

Possible rolls: 1 2 3 4 5 6
Is odd? Y N Y N Y N

P(die = odd) = 3 / 6 = 0.5



Probability: notation

Some notation blah-blah (from the book):
 - one possible state/outcome
 - all possible outcomes
 - an “event” or subset of possible outcomes

(I will quite often just call this “A”)



Probability: notation

Some notation blah-blah (from the book):
 - one possible state/outcome
 - all possible outcomes
 - an “event” or subset of possible outcomes

(I will quite often just call this “A”)

So in the dice example:
 - The die is 2 (one possibility)
 - <1, 2, 3, 4, 5, 6> (all possibilities)
 - <1, 3, 5> (the die is odd)



Probability: the basics

So in the dice example:
 - The die is 2 (one possibility)
 - <1, 2, 3, 4, 5, 6> (all possibilities)
 - <1, 3, 5> (the die is odd)

(or:                  )
Probabilities also need to:

- Be between zero and one:

- Add up to 100%:



Probability: the basics

Beyond these properties of probability,
we only really need three more facts:

1. Conditional probability

2. Probability of opposite happening

3. Definition of “or”

(this is definition)



Probability: terminology :(

Terminology side note:

P(A) is “unconditional”
or “prior”

P(A|B) is “conditional”
or “posterior”

P(A,B) is “joint”
probability

Ω
A B

Proof by picture



Probability: the basics

Proof:



Probability: example

I showed earlier (brute force) that if 
{A = die roll}, then 

Why don’t you try to compute the following:
(B, C, D, etc. are other die rolls)

1. Sum of two dice is odd:
2. Sum of three dice is odd: 
3. 20 dice: 

(can you prove this rather than guess?)



Probability: example

To get some intuition, let’s brute force the 
2-dice example:

At this point
you might guess
what the other
answers are



Probability: example

You might be able to brute force the 3-dice
example but the 20-dice... probably not

We can break this down into to cases:
1. Original die is odd, then next must be even
2. Original die is even, then next must be odd

The “then” part of both are 50% chance,
since regardless of which case we are in there
is a 50% chance means overall probability=0.5



Probability: example

You can then use induction from this argument
to generalize it:

Inductive step (by cases):
1. Sum of n dice is odd, “n+1” die is even
2. Sum of n dice is even, “n+1” die is odd
“n+1” die is just a single die, so 50% chance

Base case: we showed by brute force 50%
for single die



Probability: example

You might try to prove this with independence
(talk about next time), which you could

But you might notice that this proof actually
says something stronger, as we never actually
use the probability of the cases happening

So regardless of your original probabilities
for odd/even, if you add a 6-sided die you will
end up 50/50 split for odd/even



Random Variable: basics

Random variables are a set of value-probability
pairs

You could think of our 6-sided die as a random
variable with the following value-probabilities:

As I mentioned earlier, we often want to
associate values/utilities with probabilities

Prob. 1/6 1/6 1/6 1/6 1/6 1/6

Value 1 2 3 4 5 6



Random Variable: basics

The expected value of a random variable is
just the sum of the value*probability

So if a variable X is our die:

... then the expectation of X is:

Prob. 1/6 1/6 1/6 1/6 1/6 1/6

Value 1 2 3 4 5 6



Random Variable: basics

This makes some sense, as the “average” value
of a die is between 3 and 4 (1,2,3...4,5,6)

It is more interesting to look at more complex
cases, like sum of 2 or 3 dice:



Random Variable: basics



Random Variable: basics



Random Variable: basics



Random Variable: basics



Random Variable: basics

Just like probabilities, random variables have
their own set of properties

One of which is:

Since for a single die, E[X] = 3.5...
E[X+Y] = E[X] + E[Y] = 3.5 + 3.5 = 7
So 3 dice is 3*3.5 = 10.5
4 dice is 4*3.5 = 14

(also for scalar “a”)



Continuous spaces

Dice are an easy example as they are discrete,
but sometimes probabilities/random variables
are not nice (continuous)

Consider:

(above is the
probability density
function) 



Continuous spaces

For continuous spaces, the probability that a
specific value is taken is always zero:

Instead, we have to work over a range:

... which unfortunately requires integration:



Continuous spaces

We will use the following distributions:
Uniform Normal Poisson

Probability distribution functions:
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