

CSCI 5304

Fall 2021

COMPUTATIONAL ASPECTS OF MATRIX THEORY

 $egin{array}{lll} {\it Class\ time} & : & MW\ 4:00-5:15\ pm \\ {\it Room} & : & {\it Keller\ 3-230\ or\ Online} \\ {\it Instructor} & : & {\it Daniel\ Boley} \\ \end{array}$

Lecture notes:

http://www-users.cselabs.umn.edu/classes/Fall-2021/csci5304/

August 27, 2021

SOLVING LINEAR SYSTEMS OF EQUATIONS

- Background on linear systems
- Gaussian elimination and the Gauss-Jordan algorithms
- The LU factorization
- Gaussian Elimination with pivoting permutation matrices.
- Case of banded systems

3-1

Background: Linear systems

The Problem: A is an $n \times n$ matrix, and b a vector of \mathbb{R}^n . Find x such that:

$$Ax = b$$

ightharpoonup x is the unknown vector, b the right-hand side, and A is the coefficient matrix

Example:

$$\begin{cases} 2x_1 + 4x_2 + 4x_3 = 6 \\ x_1 + 5x_2 + 6x_3 = 4 \text{ or } \begin{pmatrix} 2 & 4 & 4 \\ 1 & 5 & 6 \\ x_1 + 3x_2 + & x_3 = 8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \\ 8 \end{pmatrix}$$

∠ Solution of above system ?

> Standard mathematical solution by Cramer's rule:

$$x_i = \det(A_i)/\det(A)$$

 $A_i = \text{matrix obtained by replacing } i\text{-th column by } b.$

Note: This formula is useless in practice beyond n=3 or n=4.

Three situations:

- 1. The matrix ${m A}$ is nonsingular. There is a unique solution given by ${m x} = {m A}^{-1}{m b}$.
- 2. The matrix A is singular and $b \in \text{Ran}(A)$. There are infinitely many solutions.
- 3. The matrix A is singular and $b \notin \operatorname{Ran}(A)$. There are no solutions.

3 GvL 3.{1,3,5} – Systems

GvL 3.{1,3,5} – Systems

Example: (1) Let $A=\begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$ $b=\begin{pmatrix} 1 \\ 8 \end{pmatrix}$. A is nonsingular \blacktriangleright a unique solution $x=\begin{pmatrix} 0.5 \\ 2 \end{pmatrix}$.

Example: (2) Case where A is singular & $b \in \operatorname{Ran}(A)$:

$$A=egin{pmatrix} 2 & 0 \ 0 & 0 \end{pmatrix}, \quad b=egin{pmatrix} 1 \ 0 \end{pmatrix}.$$

- lacksquare infinitely many solutions: $x(lpha)=egin{pmatrix} 0.5 \ lpha \end{pmatrix} \ \ orall \ lpha.$
- **Example:** (3) Let A same as above, but $b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
- No solutions since 2nd equation cannot be satisfied

4 ______ GvL 3.{1,3,5} – Systen

3-4

Triangular linear systems

Example:

$$egin{pmatrix} 2 & 4 & 4 \ 0 & 5 & -2 \ 0 & 0 & 2 \end{pmatrix} egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} = egin{pmatrix} 2 \ 1 \ 4 \end{pmatrix}$$

- \triangleright One equation can be trivially solved: the last one. $x_3 = 2$
- $ightharpoonup x_3$ is known we can now solve the 2nd equation:

$$5x_2 - 2x_3 = 1 \rightarrow 5x_2 - 2 \times 2 = 1 \rightarrow x_2 = 1$$

 \triangleright Finally x_1 can be determined similarly:

$$2x_1 + 4x_2 + 4x_3 = 2 \rightarrow \dots \rightarrow x_1 = -5$$

3-5 GvL 3.{1,3,5} – Systems

3-5

ALGORITHM: 1. Back-Substitution algorithm

For
$$i=n:-1:1$$
 do: $t:=b_i$ For $j=i+1:n$ do $t:=t-a_{ij}x_j$ $t:=b_i-(a_{i,i+1:n},x_{i+1:n})$ $t:=b_i-a_i$ inner product $x_i=t/a_{ii}$

- \blacktriangleright We must require that each $a_{ii} \neq 0$
- Operation count?

Column version of back-substitution

Back-Substitution algorithm. Column version

For
$$j=n:-1:1$$
 do: $x_j=b_j/a_{jj}$ For $i=1:j-1$ do $b_i:=b_i-x_j*a_{ij}$ End

Justify the above algorithm [Show that it does indeed compute the solution]

Analogous algorithms for lower triangular systems.

GvL 3.{1,3,5} – Systems

Linear Systems of Equations: Gaussian Elimination

Back to arbitrary linear systems.

<u>Principle of the method:</u> Since triangular systems are easy to solve, we will transform a linear system into one that is triangular. Main operation: combine rows so that zeros appear in the required locations to make the system triangular.

Notation: use a Tableau:

8 _____ GvL 3.{1,3,5} – Syste

3-8

Linear Systems of Equations: Gaussian Elimination

Go back to original system. Step 1 must transform:

$$egin{bmatrix} 2 & 4 & 4 & 2 \ 1 & 3 & 1 & 1 \ 1 & 5 & 6 & -6 \ \end{bmatrix}$$
 into: $egin{bmatrix} x & x & x & x \ 0 & x & x & x \ 0 & x & x & x \ \end{bmatrix}$

 $row_2 := row_2 - \frac{1}{2} \times row_1$: $row_3 := row_3 - \frac{1}{2} \times row_1$:

$$egin{bmatrix} 2 & 4 & 4 & 2 \ 0 & 1 & -1 & 0 \ 0 & 3 & 4 & -7 \ \end{bmatrix}$$

Main operation used: scaling and adding rows.

Example: Replace row2 by: row2 - $\frac{1}{2}$ *row1:

➤ This is equivalent to:

$$\begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 2 & 4 & 4 & 2 \\ 1 & 3 & 1 & 1 \\ 1 & 5 & 6 & -6 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 1 & 5 & 6 & -6 \end{bmatrix}$$

➤ The left-hand matrix is of the form

$$M = I - ve_1^T$$
 with $v = egin{pmatrix} 0 \ rac{1}{2} \ 0 \end{pmatrix}$

GvL 3.{1,3,5} – Systems

3-9

> Equivalent to

$$\begin{vmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ -\frac{1}{2} & 0 & 1 \end{vmatrix} \times \begin{vmatrix} 2 & 4 & 4 & 2 \\ 1 & 3 & 1 & 1 \\ 1 & 5 & 6 & -6 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 3 & 4 & -7 \end{vmatrix}$$

$$[A,b]
ightarrow [M_1A,M_1b]; \;\; M_1 = I - v^{(1)} e_1^T; \;\; v^{(1)} = egin{pmatrix} 0 \ rac{1}{2} \ rac{1}{2} \end{pmatrix}$$

New system $A_1x = b_1$. Step 2 must now transform:

$$row_3 := row_3 - 3 imes row_2 :
ightarrow egin{bmatrix} 2 & 4 & 4 & 2 \ 0 & 1 & -1 & 0 \ 0 & 0 & 7 & -7 \ \end{pmatrix}$$

Equivalent to

$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{vmatrix} \times \begin{vmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 3 & 4 & -7 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 7 & -7 \end{vmatrix}$$

Second transformation is as follows:

$$[A_1,b_1]
ightarrow [M_2A_1,M_2b_1]; \; M_2 = I - v^{(2)}e_2^T; \; v^{(2)} = egin{pmatrix} 0 \ 0 \ 3 \end{pmatrix}$$

➤ Triangular system ➤ Solve.

12 GvL $3.\{1,3,5\}$ – System

Row k

3-13 GvL 3.{1,3,5} – Systems

3-13

ALGORITHM: 2. Gaussian Elimination

- 1. For k = 1 : n 1 Do:
- 2. For i = k + 1 : n Do:
- 3. $piv := a_{ik}/a_{kk}$
- 4. For j := k + 1 : n + 1 Do :
- $5. a_{ij} := a_{ij} piv * a_{kj}$
- 6. End
- 6. End
- 7. End
- Operation count:

$$T = \sum_{k=1}^{n-1} \sum_{i=k+1}^{n} [1 + \sum_{j=k+1}^{n+1} 2] = \sum_{k=1}^{n-1} \sum_{i=k+1}^{n} (2(n-k) + 3) = ...$$

Complete the above calculation. Order of the cost?

3-14 GvL 3.{1,3,5} – Systems

The LU factorization

Now ignore the right-hand side from the transformations.

Observation: Gaussian elimination is equivalent to n-1 successive Gaussian transformations, i.e., multiplications with matrices of the form $M_k=I-v^{(k)}e_k^T$, where the first k components of $v^{(k)}$ equal zero.

ightharpoonup Set $A_0 \equiv A$

$$A o M_1 A_0 = A_1 o M_2 A_1 = A_2 o M_3 A_2 = A_3 \cdots \ o M_{n-1} A_{n-2} = A_{n-1} \equiv U$$

ightharpoonup Last $A_k \equiv U$ is an upper triangular matrix.

GvL 3.{1,3,5} — Systems

3-1-

ightharpoonup At each step we have: $A_k = M_{k+1}^{-1} A_{k+1}$. Therefore:

$$A_0 = M_1^{-1} A_1$$

$$= M_1^{-1} M_2^{-1} A_2$$

$$= M_1^{-1} M_2^{-1} M_3^{-1} A_3$$

$$= \dots$$

$$= M_1^{-1} M_2^{-1} M_3^{-1} \cdots M_{n-1}^{-1} A_{n-1}$$

- $L = M_1^{-1} M_2^{-1} M_3^{-1} \cdots M_{n-1}^{-1}$
- ightharpoonup Note: L is Lower triangular, A_{n-1} is upper triangular
- lacksquare LU decomposition : A=LU

3-16 GvL 3.{1,3,5} – Systems

3-16

A matrix $oldsymbol{A}$ has an LU decomposition if

$$\det(A(1:k,1:k)) \neq 0$$
 for $k = 1, \dots, n-1$.

In this case, the determinant of \boldsymbol{A} satisfies:

$$\det A = \det(U) = \prod_{i=1}^n u_{ii}$$

If, in addition, \boldsymbol{A} is nonsingular, then the LU factorization is unique.

How to get L?

$$L = M_1^{-1} M_2^{-1} M_3^{-1} \cdots M_{n-1}^{-1}$$

- Consider only the first 2 matrices in this product.
- ightharpoonup Note $M_k^{-1}=(I-v^{(k)}e_k^T)^{-1}=(I+v^{(k)}e_k^T).$ So:

$$M_1^{-1}M_2^{-1} = (I + v^{(1)}e_1^T)(I + v^{(2)}e_2^T) = I + v^{(1)}e_1^T + v^{(2)}e_2^T.$$

➤ Generally,

$$M_1^{-1}M_2^{-1}\cdots M_k^{-1} = I + v^{(1)}e_1^T + v^{(2)}e_2^T + \cdots v^{(k)}e_k^T$$

The L factor is a lower triangular matrix with ones on the diagonal. Column k of L, contains the multipliers l_{ik} used in the k-th step of Gaussian elimination.

3-17 GvL 3.{1,3,5} – Systems

3-17

Practical use: Show how to use the LU factorization to solve linear systems with the same matrix A and different b's.

LU factorization of the matrix $A = \begin{pmatrix} 2 & 4 & 4 \\ 1 & 5 & 6 \\ 1 & 3 & 1 \end{pmatrix}$?

True or false: "Computing the LU factorization of matrix A involves more arithmetic operations than solving a linear system Ax = b by Gaussian elimination".

Gauss-Jordan Elimination

Principle of the method: We will now transform the system into one that is even easier to solve than triangular systems, namely a diagonal system. The method is very similar to Gaussian Elimination. It is just a bit more expensive.

Back to original system. Step 1 must transform:

2	4	4	2		\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}
1	3	1	1	into:	0	\boldsymbol{x}	\boldsymbol{x}	$ oldsymbol{x}$
1	5	6	-6		0	\boldsymbol{x}	\boldsymbol{x}	$ oldsymbol{x} $

GvL 3.{1,3,5} - Systems

There is now a third step:

 $row_1 := row_1 - \frac{8}{7} \times row_3$: $row_2 := row_2 - \frac{-1}{7} \times row_3$:

$$egin{bmatrix} 2 & 0 & 0 & 10 \ 0 & 1 & -1 & 0 \ 0 & 0 & 7 & -7 \ \end{bmatrix}$$

$$\begin{array}{ccc|c} 2 & 0 & 0 & 10 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 7 & -7 \end{array}$$

Solution: $x_3 = -1$; $x_2 = -1$; $x_1 = 5$

 $row_2 := row_2 - 0.5 \times row_1$: $row_3 := row_3 - 0.5 \times row_1$:

$$\begin{bmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 3 & 4 & -7 \end{bmatrix}$$

Step 2: 0

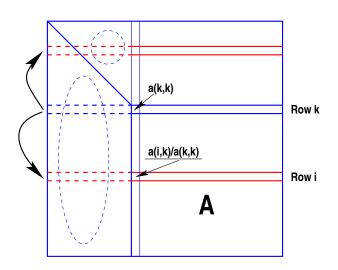
 $1 \quad -1 \quad 0 \quad | \text{ into: } \quad 0 \quad x \quad x \mid x$ $\boldsymbol{x} | \boldsymbol{x}$

 $row_1 := row_1 - 4 \times row_2$: $row_3 := row_3 - 3 \times row_2$:

$$\begin{bmatrix} 2 & 0 & 8 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 3 & 4 & -7 \end{bmatrix}$$

GvL 3.{1,3,5} - Systems

GvL 3.{1,3,5} - Systems



ALGORITHM: 3. Gauss-Jordan elimination

- 1. For k = 1 : n Do:
- 2. For i = 1 : n and if i! = k Do :
- $3. piv := a_{ik}/a_{kk}$
- 4. For j := k + 1 : n + 1 Do :
- $5. a_{ij} := a_{ij} piv * a_{kj}$
- 6. End
- 6. End
- 7. End

➤ Operation count:

$$T = \sum_{k=1}^{n} \sum_{i=1}^{n-1} [1 + \sum_{j=k+1}^{n+1} 2] = \sum_{k=1}^{n} \sum_{i=1}^{n-1} (2(n-k) + 3) = \cdots$$

Complete the above calculation. Order of the cost? How does it compare with Gaussian Elimination?

-24 ______ GvL 3.{1,3,5} – Systems

2 24

25 GvL 3.{1,3,5} – Systems

Gaussian Elimination: Partial Pivoting

Consider again Gaussian Elimination for the linear system

$$\left\{ \begin{array}{lll} 2x_1 + 2x_2 + 4x_3 = & 2 \\ x_1 + & x_2 + & x_3 = & 1 & \mathrm{Or:} \end{array} \right. \left. \begin{array}{lll} 2 & 2 & 4 & 2 \\ 1 & 1 & 1 & 1 \\ 1 & 4 & 6 & -5 \end{array} \right.$$

 $row_2 := row_2 - \frac{1}{2} \times row_1$: $row_3 := row_3 - \frac{1}{2} \times row_1$:

$$egin{bmatrix} 2 & 2 & 4 & 2 \ 0 & 0 & -1 & 0 \ 1 & 4 & 6 & -5 \ \end{bmatrix}$$

$$\begin{bmatrix} 2 & 2 & 4 & 2 \\ 0 & 0 & -1 & 0 \\ 0 & 3 & 4 & -6 \end{bmatrix}$$

Pivot a_{22} is zero. Solution : permute rows 2 and 3:

GvL 3.{1,3,5} - Systems

Gaussian Elimination with Partial Pivoting

Partial Pivoting

Row k

Largest | a ik | Perfute touts

➤ General situation:

Always permute row $m{k}$ with row $m{l}$ such that

$$|a_{lk}| = \max_{i=k,\dots,n} |a_{ik}|$$

➤ More 'stable' algorithm.

GvL $3.\{1,3,5\}$ – Systems

3-26

```
function x = gaussp(A, b)
  function x = guassp(A, b)
  solves A x = b by Gaussian elimination with
  partial pivoting/
\tilde{n} = size(A,1):
A = [A,b]
for k=1:n-1
    [t, ip] = max(abs(A(k:n,k)));
ip = ip+k-1;
%% swap
    temp = A(k,k:n+1) ;
    A(k,k:n+1) = A(ip,k:n+1);
    A(ip,k:n+1) = temp;
     for i=k+1:n
    piv = A(i,k) / A(k,k);
    A(i,k+1:n+1) = A(i,k+1:n+1) - piv*A(k,k+1:n+1);
   end
x = backsolv(A,A(:,n+1));
```

Pivoting and permutation matrices

- A permutation matrix is a matrix obtained from the identity matrix by permuting its rows
- lacksquare For example for the permutation $\pi=\{3,1,4,2\}$ we obtain

$$P = egin{pmatrix} 0 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \end{pmatrix}$$

Important observation: the matrix PA is obtained from A by permuting its rows with the permutation π

$$(PA)_{i,:}=A_{\pi(i),:}$$

3-29 GvL 3.{1,3,5} – Systems

3-29

Mhat is the matrix PA when

$$P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \ A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 0 & -1 & 2 \\ -3 & 4 & -5 & 6 \end{pmatrix} ?$$

- \blacktriangleright Any permutation matrix is the product of interchange permutations, which only swap two rows of I.
- Notation: $E_{ij} =$ Identity with rows i and j swapped

Example: To obtain $\pi = \{3, 1, 4, 2\}$ from $\pi = \{1, 2, 3, 4\}$ – we need to swap $\pi(2) \leftrightarrow \pi(3)$ then $\pi(3) \leftrightarrow \pi(4)$ and finally $\pi(1) \leftrightarrow \pi(2)$. Hence:

$$P = egin{pmatrix} 0 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \end{pmatrix} = E_{1,2} imes E_{3,4} imes E_{2,3}$$

Matlab gives det(A) = -896. What is det(PA)?

31 _____ GvL 3.{1,3,5} - Systems

GvL $3.\{1,3,5\}$ – Systems

At each step of G.E. with partial pivoting:

$$M_{k+1}E_{k+1}A_k = A_{k+1}$$

where E_{k+1} encodes a swap of row k+1 with row l>k+1.

Notes: (1) $E_i^{-1} = E_i$ and (2) $M_j^{-1} \times E_{k+1} = E_{k+1} \times \tilde{M}_j^{-1}$ for $k \geq j$, where \tilde{M}_j has a permuted Gauss vector:

$$egin{aligned} (I + v^{(j)} e_j^T) E_{k+1} &= E_{k+1} (I + E_{k+1} v^{(j)} e_j^T) \ &\equiv E_{k+1} (I + ilde{v}^{(j)} e_j^T) \ &\equiv E_{k+1} ilde{M}_i \end{aligned}$$

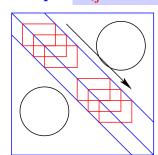
ightharpoonup Here we have used the fact that above row k+1, the permutation matrix E_{k+1} looks just like an identity matrix.

3-32 GvL 3.{1,3,5} – Systems

3-32

$Special\ case\ of\ banded\ matrices$

- Banded matrices arise in many applications
- lacksquare A has upper bandwidth q if $a_{ij}=0$ for j-i>q
- ightharpoonup A has lower bandwidth p if $a_{ij}=0$ for i-j>p



ightharpoonup Simplest case: tridiagonal ightharpoonup p=q=1.

Result:

$$egin{aligned} A_0 &= E_1 M_1^{-1} A_1 \ &= E_1 M_1^{-1} E_2 M_2^{-1} A_2 = E_1 E_2 ilde{M}_1^{-1} M_2^{-1} A_2 \ &= E_1 E_2 ilde{M}_1^{-1} M_2^{-1} E_3 M_3^{-1} A_3 \ &= E_1 E_2 E_3 ilde{M}_1^{-1} ilde{M}_2^{-1} M_3^{-1} A_3 \ &= \dots \ &= E_1 \cdots E_{n-1} \ imes ilde{M}_1^{-1} ilde{M}_2^{-1} ilde{M}_3^{-1} \cdots ilde{M}_{n-1}^{-1} \ ilde{M}_{n-1}^{-1} \ ilde{M}_{n-1}^{-1} \ ilde{M}_{n-1}^{-1} \end{array}$$

➤ In the end

$$PA = LU$$
 with $P = E_{n-1} \cdots E_1$

3-33 GvL 3.{1,3,5} – Systems

3-33

First observation: Gaussian elimination (no pivoting) preserves the initial banded form. Consider first step of Gaussian elimination:

- 2. For i = 2 : n Do:
- 3. $a_{i1} := a_{i1}/a_{11}$ (pivots)
- 4. For j := 2 : n Do :
- 5. $a_{ij} := a_{ij} a_{i1} * a_{1j}$
- 6. End
- 7. End

GvL 3.{1,3,5} – Systems

GvL 3.{1,3,5} – Systems

▶ If A has upper bandwidth q and lower bandwidth p then so is the resulting [L/U] matrix. ▶ Band form is preserved (induction)

✓ 11 Operation count?

What happens when partial pivoting is used?

If A has lower bandwidth p, upper bandwidth q, and if Gaussian elimination with partial pivoting is used, then the resulting U has upper bandwidth p+q. L has at most p+1 nonzero elements per column (bandedness is lost).

GvL 3.{1,3,5} – Systems

3-35

35 GvL 3.{1,3,5} – Systems

3-35

ightharpoonup Simplest case: tridiagonal ightharpoonup p = q = 1.

Example:

$$A = egin{pmatrix} 1 & 1 & 0 & 0 & 0 \ 2 & 1 & 1 & 0 & 0 \ 0 & 2 & 1 & 1 & 0 \ 0 & 0 & 2 & 1 & 1 \ 0 & 0 & 0 & 2 & 1 \end{pmatrix}$$

3-36 GvL 3.{1,3,5} – Systems