OF MINNESOTA TWIN CITIES

CSCI 5304

Fall 2021

COMPUTATIONAL ASPECTS OF MATRIX THEORY

Class time : MW 4:00 - 5:15 pm

Room: Keller 3-230 or Online

Instructor: Daniel Boley

Lecture notes:

http://www-users.cselabs.umn.edu/classes/Fall-2021/csci5304/

©Univ. of Minn August 27, 2021

VECTOR & MATRIX NORMS

- Inner products
- Vector norms
- Matrix norms
- Introduction to singular values
- Expressions of some matrix norms.

Inner products and Norms

Inner product of 2 vectors

 \blacktriangleright Inner product of 2 vectors $m{x}$ and $m{y}$ in \mathbb{R}^n :

$$x_1y_1+x_2y_2+\cdots+x_ny_n$$
 in \mathbb{R}^n

Notation: (x,y) or y^Tx

For complex vectors

$$(x,y)=x_1ar{y}_1+x_2ar{y}_2+\cdots+x_nar{y}_n$$
 in \mathbb{C}^n

Note: $(x,y)=y^Hx$

ullet On notation: Sometimes you will find $\langle .,.
angle$ for (.,.) and A^* instead of A^H

2-2 [(c)U of Mn]

GvL 2.2-2.3; - Norms

Properties of Inner Product:

- $ightharpoonup (x,y) = \overline{(y,x)}$.
- ightharpoonup (lpha x + eta y, z) = lpha(x, z) + eta(y, z) [Linearity]
- $(x,x) \ge 0$ is always real and non-negative.
- (x,x)=0 iff x=0 (for finite dimensional spaces).

2-2 [©U of Mn] GvL 2.2-2.3; — Norms

ightharpoonup Given $A \in \mathbb{C}^{m \times n}$ then

$$(Ax,y)=(x,A^Hy) \;\;\; orall \; x \; \in \; \mathbb{C}^n, orall y \; \in \; \mathbb{C}^m$$

2-3 [©U of Mn] GvL 2.2-2.3; - Norms

Vector norms

Norms are needed to measure lengths of vectors and closeness of two vectors. Examples of use: Estimate convergence rate of an iterative method; Estimate the error of an approximation to a given solution; ...

2-3 [©U of Mn] GvL 2.2-2.3; - Norms

ightharpoonup A vector norm on a vector space X is a real-valued function on X, which satisfies the following three conditions:

$$1. \|x\| \ge 0, \quad \forall \ x \in \mathbb{X}, \quad \text{and} \quad \|x\| = 0 \text{ iff } x = 0.$$

- 2. $\|\alpha x\| = |\alpha| \|x\|, \quad \forall x \in \mathbb{X}, \quad \forall \alpha \in \mathbb{C}.$
- 3. $||x + y|| \le ||x|| + ||y||$, $\forall x, y \in X$.
- Third property is called the triangle inequality.

2-4 [©U of Mn] GvL 2.2-2.3; — Norms

Important example: Euclidean norm on $X = \mathbb{C}^n$,

on
$$\mathbb{X}=\mathbb{C}^n$$

$$\|x\|_2 = (x,x)^{1/2} = \sqrt{|x_1|^2 + |x_2|^2 + \ldots + |x_n|^2}$$

Show that when $oldsymbol{Q}$ is orthogonal then $\|oldsymbol{Q} x\|_2 = \|x\|_2$

2-4 [©U of Mn]

Most common vector norms in numerical linear algebra: special cases of the Hölder norms (for $p \ge 1$):

$$\|x\|_p = \left(\sum_{i=1}^n |x_i|^p
ight)^{1/p}.$$

Find out (online search) how to show that these are indeed norms for any $p \geq 1$ (Not easy for 3rd requirement!)

2-5 _____ [©U of Mn] _____ GvL 2.2-2.3; — Norms

Property:

ightharpoonup Limit of $\|x\|_p$ when $p o \infty$ exists:

$$\lim_{p\to\infty} \|x\|_p = \max_{i=1}^n |x_i|$$

- \triangleright Defines a norm denoted by $\|\cdot\|_{\infty}$.
- The cases p=1, p=2, and $p=\infty$ lead to the most important norms $\|.\|_p$ in practice. These are:

$$\|x\|_1 = |x_1| + |x_2| + \cdots + |x_n|, \ \|x\|_2 = \left[|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2\right]^{1/2}, \ \|x\|_{\infty} = \max_{i=1,...,n} |x_i|.$$

2-6 _____ [©U of Mn]

GvL 2.2-2.3; – Norms

➤ The Cauchy-Schwartz inequality (important) is:

$$|(x,y)| \leq ||x||_2 ||y||_2.$$

- ∠
 Mhen do you have equality in the above relation?
- Expand (x + y, x + y). What does the Cauchy-Schwarz inequality imply?

2-6 _____ [©U of Mn] _____ GvL 2.2-2.3; — Norms

ightharpoonup The Hölder inequality (less important for $p \neq 2$) is:

$$|(x,y)| \leq \|x\|_p \|y\|_q$$
 , with $rac{1}{p} + rac{1}{q} = 1$

Proof moved to supplement set #2.

- Second triangle inequality: $||x|| ||y|| | \le ||x y||$.
- Consider the metric $d(x,y)=max_i|x_i-y_i|$. Show that any norm in \mathbb{R}^n is a continuous function with respect to this metric.

2-7 [©U of Mn] GvL 2.2-2.3; - Norms

Equivalence of norms:

In finite dimensional spaces $(\mathbb{R}^n, \mathbb{C}^n, ...)$ all norms are 'equivalent': if ϕ_1 and ϕ_2 are two norms then there exists positive constants α, β such that:

$$\beta \phi_2(x) \leq \phi_1(x) \leq \alpha \phi_2(x)$$
.

Mow can you prove this result? [Hint: Show for $\phi_2 = \|.\|_{\infty}$]

2-7 [©U of Mn]

- We can bound one norm in terms of any other norm.
- Show that for any x: $\frac{1}{\sqrt{n}} \|x\|_1 \leq \|x\|_2 \leq \|x\|_1$
- What are the "unit balls" $B_p=\{x\mid \|x\|_p\leq 1\}$ associated with the norms $\|.\|_p$ for $p=1,2,\infty$, in \mathbb{R}^2 ?

2-8 _____ [©U of Mn] _____ GvL 2.2-2.3; — Norms

Convergence of vector sequences

A sequence of vectors $x^{(k)}$, $k=1,\ldots,\infty$ converges to a vector x with respect to the norm $\|\cdot\|$ if, by definition,

$$\lim_{k o \infty} \|x^{(k)} - x\| = 0$$

- Important point: because all norms in \mathbb{R}^n are equivalent, the convergence of $x^{(k)}$ w.r.t. a given norm implies convergence w.r.t. any other norm.
- Notation:

$$\lim_{k o \infty} x^{(k)} = x$$

2-9 _____ [©U of Mn] _____ GvL 2.2-2.3; — Norms

Example: | T

The sequence

$$x^{(k)} = egin{pmatrix} 1+1/k \ rac{k}{k+\log_2 k} \ rac{1}{k} \end{pmatrix}$$

converges to

$$x = egin{pmatrix} 1 \ 1 \ 0 \end{pmatrix}$$

Note: Convergence of $x^{(k)}$ to x is the same as the convergence of each individual component $x_i^{(k)}$ of $x^{(k)}$ to the corresponding component x_i of x.

2-10 _____ [©U of Mn]

GvL 2.2-2.3; - Norms

Matrix norms

Can define matrix norms by considering $m \times n$ matrices as vectors in \mathbb{R}^{mn} . These norms satisfy the usual properties of vector norms, i.e.,

- 1. $||A|| \geq 0$, $\forall A \in \mathbb{C}^{m \times n}$, and ||A|| = 0 iff A = 0
- 2. $\|\alpha A\| = |\alpha| \|A\|, \forall A \in \mathbb{C}^{m \times n}, \ \forall \ \alpha \in \mathbb{C}$
- 3. $||A + B|| \le ||A|| + ||B||, \ \forall A, B \in \mathbb{C}^{m \times n}$.

- However, these will lack (in general) the right properties for composition of operators (product of matrices).
- \triangleright The case of $||.||_2$ yields the Frobenius norm of matrices.

2-11 _____ [©U of Mn] _____ GvL 2.2-2.3; — Norms

 \blacktriangleright Given a matrix A in $\mathbb{C}^{m\times n}$, define the set of matrix norms

$$\|A\|_p = \max_{x \in \mathbb{C}^n, \; x
eq 0} rac{\|Ax\|_p}{\|x\|_p}.$$

- These norms satisfy the usual properties of vector norms (see previous page).
- \blacktriangleright The matrix norm $\|.\|_p$ is induced by the vector norm $\|.\|_p$.
- ightharpoonup Again, important cases are for $p=1,2,\infty$.
- $lacksquare \mathsf{Show}$ that $\|A\|_p = \max_{x \in \mathbb{C}^n, \; \|x\|_p = 1} \; \|Ax\|_p$

2-12 _____ [©U of Mn] _____ GvL 2.2-2.3; — Norms

Consistency / sub-mutiplicativity of matrix norms

A fundamental property of matrix norms is consistency

$$||AB||_p \leq ||A||_p ||B||_p$$
.

[Also termed "sub-multiplicativity"]

- ightharpoonup Consequence: (for square matrices) $|\|A^k\|_p \leq \|A\|_p^k$
- $igwedge A^k$ converges to zero if any of its p-norms is < 1

[Note: sufficient but not necessary condition]

2-13 _____ [©U of Mn] GvL 2.2-2.3: - Norms

Frobenius norms of matrices

The Frobenius norm of a matrix is defined by

$$\|A\|_F = \left(\sum_{j=1}^n \sum_{i=1}^m |a_{ij}|^2\right)^{1/2}$$
 .

- Same as the 2-norm of the column vector in \mathbb{C}^{mn} consisting of all the columns (respectively rows) of A.
- ➤ This norm is also consistent [but not induced from a vector norm]

2-14 _____ [©U of Mn] _____ GvL 2.2-2.3; — Norms

Compute the Frobenius norms of the matrices

$$egin{pmatrix} 1 & 1 \ 1 & 0 \ 3 & 2 \end{pmatrix} \qquad egin{pmatrix} 1 & 2 & -1 \ -1 & \sqrt{5} & 0 \ -1 & 1 & \sqrt{2} \end{pmatrix}$$

Prove that the Frobenius norm is consistent [Hint: Use Cauchy-Schwartz]

Define the 'vector 1-norm' of a matrix A as the 1-norm of the vector of stacked columns of A. Is this norm a consistent matrix norm?

[Hint: Result is true – Use Cauchy-Schwarz to prove it.]

2-15 [©U of Mn]

Expressions of standard matrix norms

 \blacktriangleright Recall the notation: (for square $n \times n$ matrices)

$$ho(A)=\max|\lambda_i(A)|; \;\; ext{Tr}\,(A)=\sum_{i=1}^n a_{ii}=\sum_{i=1}^n \lambda_i(A)$$
 where $\lambda_i(A)$, $i=1,2,\ldots,n$ are all eigenvalues of A

$$\|A\|_1 = \max_{j=1,...,n} \sum_{i=1}^m |a_{ij}|,$$
 $\|A\|_{\infty} = \max_{i=1,...,m} \sum_{j=1}^n |a_{ij}|,$ $\|A\|_2 = \left[\rho(A^HA)\right]^{1/2} = \left[\rho(AA^H)\right]^{1/2},$ $\|A\|_F = \left[\operatorname{Tr}(A^HA)\right]^{1/2} = \left[\operatorname{Tr}(AA^H)\right]^{1/2}.$

-16 _____ [©U of Mn] _____ GvL 2.2-2.3; - Norms

Compute the p-norm for $p=1,2,\infty,F$ for the matrix

$$A = egin{pmatrix} 0 & 2 \ 0 & 1 \end{pmatrix}$$

🔼 Show that $ho(A) \leq \|A\|$ for any matrix norm.

2-16 _____ [©U of Mn] _____ GvL 2.2-2.3; — Norms

- 1. $\rho(A) = \|A\|_2$ when A is Hermitian $(A^H = A)$. \blacktriangleright True for this particular case...
- 2. ... However, not true in general. For $A=\begin{pmatrix}0&1\\0&0\end{pmatrix}$, we have ho(A)=0 while $A\neq 0$. Also, triangle inequality not satisfied for the pair A, and $B=A^T$. Indeed, $\rho(A+B)=1$ while $\rho(A)+\rho(B)=0$.
- Given a function f(t) (e.g., e^t) how would you define f(A)? [Was seen earlier. Here you need to fully justify answer. Assume A is diagonalizable]

2-17 [©U of Mn] GvL 2.2-2.3; - Norms

Singular values and matrix norms

- lacksquare Let $A \in \mathbb{R}^{m imes n}$ or $A \in \mathbb{C}^{m imes n}$
- \blacktriangleright Eigenvalues of A^HA & AA^H are real ≥ 0 . \blacktriangleright Show this.
- Let $\left\{egin{array}{l} \sigma_i = \sqrt{\lambda_i(A^HA)} \ i = 1, \cdots, n \ ext{if} \ n \leq m \ \sigma_i = \sqrt{\lambda_i(AA^H)} \ i = 1, \cdots, m \ ext{if} \ m < n \end{array}
 ight.$
- \blacktriangleright The σ_i 's are called singular values of A.
- ightharpoonup Note: a total of $\min(m,n)$ singular values.
- ightharpoonup Always sorted decreasingly: $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq \cdots \sigma_k \geq \cdots$
- We will see a lot more on singular values later

2-18 _____ [©U of Mn] _____ GvL 2.2-2.3; — Norms

ightharpoonup Assume we have r nonzero singular values (with $r \leq \min\{m,n\}$):

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$

Then:

$$ullet \|A\|_2 = oldsymbol{\sigma}_1$$

$$egin{aligned} ullet \|A\|_2 &= oldsymbol{\sigma}_1 \ ullet \|A\|_F &= igg[\sum_{i=1}^r \sigma_i^2ig]^{1/2} \end{aligned}$$

2-18 _____ [(c)U of Mn]

More generally: Schatten p-norm ($p \ge 1$) defined by

$$\|A\|_{*,p} = \left[\sum_{i=1}^r \sigma_i^p
ight]^{1/p}$$

- ightharpoonup Note: $\|A\|_{*,p}=p$ -norm of vector $[\sigma_1;\sigma_2;\cdots;\sigma_r]$
- In particular: $||A||_{*,1} = \sum \sigma_i$ is called the nuclear norm and is denoted by $||A||_*$. (Common in machine learning).

2-19 _____ [©U of Mn] _____ GvL 2.2-2.3; — Norms

A few properties of the 2-norm and the F-norm

- ightharpoonup Let $A=uv^T$. Then $\|A\|_2=\|u\|_2\|v\|_2$
- Prove this result
- 🔼 19 In this case $||A||_F=??$

For any $A \in \mathbb{C}^{m \times n}$ and unitary matrix $Q \in \mathbb{C}^{m \times m}$ we have $\|QA\|_2 = \|A\|_2; \quad \|QA\|_F = \|A\|_F.$

2-19 _____ [©U of Mn] _____ GvL 2.2-2.3; — Norms

Show that the result is true for any orthogonal matrix Q (Q has orthonomal columns), i.e., when $Q \in \mathbb{C}^{p imes m}$ with p > m

Let $Q\in\mathbb{C}^{n imes n}$, unitary. Do we have $\|AQ\|_2=\|A\|_2$? $\|AQ\|_F=\|A\|_F$? What if $Q\in\mathbb{C}^{n imes p}$, with p< n (and $Q^HQ=I$)?

2-20 _____ [©U of Mn] _____ GvL 2.2-2.3; — Norms