OF MINNESOTA TWIN CITIES

C S C I 5304

Fall 2021

COMPUTATIONAL ASPECTS OF MATRIX THEORY

Class time : MW 4:00 - 5:15 pm

Room: Keller 3-230 or Online

Instructor: Daniel Boley

Lecture notes:

http://www-users.cselabs.umn.edu/classes/Fall-2021/csci5304/

APPLICATION: GRAPH PARTITIONING

Graph Laplacians - Definition

- "Laplace-type" matrices associated with general undirected graphs
- useful in many applications
- lacksquare Given a graph G=(V,E) define
- ullet A matrix W of weights w_{ij} for each edge
- ullet Assume $w_{ij} \geq 0,$, $w_{ii} = 0$, and $w_{ij} = w_{ji} \ orall (i,j)$
- ullet The diagonal matrix $oldsymbol{D} = diag(d_i)$ with $d_i = \sum_{j
 eq i} w_{ij}$
- \blacktriangleright Corresponding graph Laplacian of G is:

$$L = D - W$$

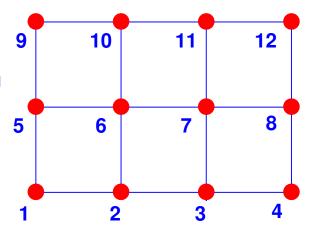
ightharpoonup Gershgorin's theorem ightarrow L is positive semidefinite

15-2 _____ — graph

Simplest case:

$$w_{ij} = \left\{egin{array}{ll} 1 & ext{if } (i,j) \in E\&i
eq j \ 0 & ext{else} \end{array}
ight. egin{array}{ll} E\&i
eq j \ D = ext{diag} \end{array} \left[egin{array}{ll} d_i = \sum_{j
eq i} w_{ij} \ d_j = \sum_{j
eq i} w_{ij} \ d_j$$

Define the graph Laplacian for the graph associated with the simple mesh shown next. 5 [use the simple weights of 0 or 1]



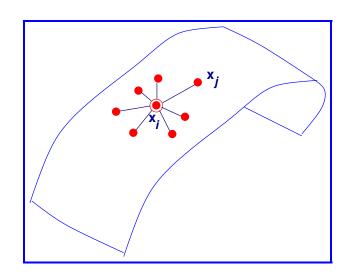
15-4 _____ — graph

A few properties of graph Laplacians

What is the difference with the discretization of the Laplace operator in 2-D for case when mesh is the same as this graph?

15-5 ______ — graph

A few properties of graph Laplacians



Strong relation between x^TLx and local distances between entries of x

igwedge Let $oldsymbol{L}=$ any matrix s.t. $oldsymbol{L}=oldsymbol{D} oldsymbol{W}$, with $oldsymbol{D}=oldsymbol{diag}(oldsymbol{d_i})$ and

$$w_{ij} \geq 0, \qquad d_i \ = \ \sum_{j
eq i} w_{ij}$$

Property 1: for any $x \in \mathbb{R}^n$:

$$oldsymbol{x}^ op oldsymbol{L} oldsymbol{x} = rac{1}{2} \sum_{i,j} w_{ij} |x_i - x_j|^2$$

Property 2: (generalization) for any $Y \in \mathbb{R}^{d imes n}$:

$$\mathsf{Tr}\left[oldsymbol{Y}oldsymbol{L}oldsymbol{Y}^ op
ight] = rac{1}{2}\sum_{i,j} w_{ij}\|oldsymbol{y}_i - oldsymbol{y}_j\|^2$$

15-7 _____ — graph

Property 3: For the particular $L = I - \frac{1}{n} \mathbf{1} \mathbf{1}^{ op}$

$$oldsymbol{X}oldsymbol{L}oldsymbol{X}^ op = ar{oldsymbol{X}}ar{oldsymbol{X}}^ op = oldsymbol{n} imes \mathsf{Covariance}$$
 matrix

Property 4: L is singular and admits the null vector e = ones(n,1)

Property 5: (Graph partitioning) Consider situation when $w_{ij} \in \{0,1\}$. If x is a vector of signs (± 1) then

$$oldsymbol{x}^ op oldsymbol{L} oldsymbol{x} = 4 imes ext{('number of edge cuts')}$$

edge-cut = pair (i,j) with $x_i
eq x_j$

- Would like to minimize (Lx,x) subject to $x\in\{-1,1\}^n$ and $e^Tx=0$ [balanced sets]
- WII solve a relaxed form of this problem

15-8 ______ — graph

- Consider any symmetric (real) matrix A with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ and eigenvectors u_1, \cdots, u_n
- Recall that: (Min reached for $x = u_1$)

$$\min_{x\in\mathbb{R}^n}rac{(Ax,x)}{(x,x)}=\lambda_1$$

In addition: (Min reached for $x = u_2$)

$$\min_{x\perp u_1}rac{(Ax,x)}{(x,x)}=\lambda_2$$

- lacksquare For a graph Laplacian $u_1=e=$ vector of all ones and
- ightharpoonup ...vector u_2 is called the Fiedler vector. It solves a relaxed form of the problem -

$$\min_{oldsymbol{x} \in \{-1,1\}^n;\; e^Tx=0} rac{(Lx,x)}{(x,x)}
ightarrow \min_{oldsymbol{x} \in \mathbb{R}^n;\; e^Tx=0} rac{(Lx,x)}{(x,x)}$$

ightharpoonup Define $v=u_2$ then lab=sign(v-med(v))

15-10 _____ — graph

Spectral Graph Partitioning

Idea:

- Partition graph in two using fiedler vectors
- Cut largest in two ...
- Repeat until number of desired partitions is reached
- ➤ Use the Lanczos algorithm to compute the Fiedler vector at each step

15-11

Application: Spectral Graph Partitioning

- Let N be the incidence matrix: $N_{ij}=\pm 1$ if i-th edge is incident on the j-th vertex.
- For example: $A \leftrightarrow C,D$, $B \leftrightarrow D$, $C \leftrightarrow A$, $D \leftrightarrow A,B$ (undirected graph):

$$N = egin{pmatrix} 1 & 0 & -1 & 0 \ 1 & 0 & 0 & -1 \ 0 & -1 & 0 & 1 \end{pmatrix},$$

yielding Laplacian = diagonal matrix of degrees - Adjacency matrix :

$$m{N^TN} = m{L} = egin{pmatrix} 2 & 0 & -1 & -1 \ 0 & 1 & 0 & -1 \ -1 & 0 & 1 & 0 \ -1 & -1 & 0 & 2 \end{pmatrix}.$$

15-12

graph

Normalized Graph Cuts

Mark a partitioning of the vertices: $n_-=1,\ n_+=3$ $v=[1,1,1,-3]^T/\sqrt{3\cdot 1}=[n_-,n_-,n_-,-n_+]^T/\sqrt{n_-n_+}.$

Then

$$rac{oldsymbol{v}^T oldsymbol{L} oldsymbol{v}}{oldsymbol{v}^T oldsymbol{v}} = |\mathsf{cut}| \cdot \left(rac{1}{n_-} + rac{1}{n_+}
ight)$$
 and:

 $v^Te=0$, where $e=[1,1,1,1]^T=$ eigenvector of L.

 \blacktriangleright Approximately minimize this with an eigenvector of $m{L}$:

```
-1.E-15 (.500000 .500000 .500000 .500000) \leftarrow 'null' vector .585786 (-.27059 .653281 -.65328 .270598) \leftarrow 'Fiedler' 2.00000 (.500000 -.50000 -.50000 .500000) vector 3.41421 (.653281 .270598 -.27059 -.65328)
```

15-13 _____ — graph

Analogy with Electrical Networks

- Let 1 amp current is applied between nodes 1 and n. Assume unit resistances on every link. What is the voltage drop?
- Let v= vector of voltage levels at each node. Ohm's Law: Nv= i = currents across every link. Kirchoff's Law: N^T i = b, where $b=(1,0,\ldots,0,-1)^T$.
- lacksquare Solve $m{N^TNv}=m{b}$ for voltages. Use $m{L}=m{N^TN}$. Try $m{v}=m{L^\dagger b}$
- \blacktriangleright Voltage drop from 1 to n is proportional to the average commute time for a random walk from 1 to n and back. This is a square of a metric distance between nodes.

15-14 _____ — graph

Application: Google's Page rank

- ldea is to put order into the web by ranking pages by their importance..
- Install the google-toolbar on your laptop or computer

http://toolbar.google.com/

- Tells you how important a page is...
- Google uses this for searches...
- Updated regularly...
- Still a lot of mystery in what is in it..

15-15 _____ - Appl1

Page-rank - explained

Main point: A page is important if it is pointed to by other important pages.

- Importance of your page (its PageRank) is determined by summing the page ranks of all pages which point to it.
- ➤ Weighting: If a page points to several other pages, then the weighting should be distributed proportionally.
- Imagine many tokens doing a random walk on this graph:
 - ullet (δ/n) chance to follow one of the n links on a page,
 - ullet $(1-\delta)$ chance to jump to a random page.
 - What's the chance a token will land on each page?
- If www.cs.umn.edu/~boley points to 10 pages including yours, then you will get 1/10 of the credit of my page.

15-16 _____ — Appl1

Page-Rank - definitions

If T_1 , ..., T_n point to page T_i then

$$ho(T_i) \ = \ 1 - \delta + \delta \left[rac{
ho(T_1)}{|T_1|} + rac{
ho(T_2)}{|T_2|} + \cdots rac{
ho(T_n)}{|T_n|}
ight]$$

- $|T_j|=$ count of links going out of Page T_i . So the 'vote' $ho(T_j)$ is spread evenly among $|T_j|$ links.
- ightharpoonup Sum of all PageRanks ==1: $\Sigma_{m{T}}
 ho(m{T})=m{1}$
- \succ δ is a 'damping' parameter close to 1 e.g. 0.85
- Defines a (possibly huge) Hyperlink matrix $m{H}$ $h_{ij} = \left\{ egin{array}{ll} rac{1}{|T_i|} & ext{if} & i ext{ points to } j \ 0 & ext{otherwise} \end{array}
 ight.$

15-17 — Appl1

4 Nodes

A points to B and D

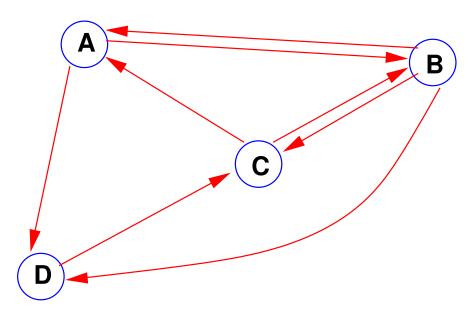
B points to A, C, and D

C points to A and B

D points to C

- 1) What is the H matrix?
- 2) the graph?

15-18



	$oldsymbol{A}$	${m B}$	\boldsymbol{C}	$oldsymbol{D}$
\boldsymbol{A}		1/2		1/2
\boldsymbol{B}	1/3		1/3	1/3
\boldsymbol{C}	1/2	1/2		
D			1	

- \blacktriangleright Row- sums of $m{H}$ are =1.
- Sum of all PageRanks will be one:

$$\sum_{ extstyle
ho(A) = 1.}
ho(A) = 1.$$

ightharpoonup H is a stochastic matrix [actually it is forced to be by changing zero rows]

15-19

Algorithm (PageRank)

- 1. Select initial row vector v ($v \geq 0$)
- 2. For i=1:maxitr

$$3 \qquad v := (1 - \delta)e^T + \delta v H$$

4. end

Do a few steps of this algorithm for previous example with $\delta = 0.85$.

This is a row iteration..

$$\boldsymbol{v}$$

 $= |(1-\delta)e^T|$

15-20

Appl1

A few properties:

- $\succ v$ will remain ≥ 0 . [combines non-negative vectors]
- More general iteration is of the form

$$v := v[\underbrace{(1-\delta)E + \delta H}]$$
 with $E = ez^T$

where z is a probability vector $e^Tz=1$ [Ex. $z=rac{1}{n}e$]

- A variant of the power method.
- ightharpoonup e is a right-eigenvector of G associated with $\lambda=1$. We are interested in the left eigenvector.

15-21 — — Appl1

Kleinberg's Hubs and Authorities

- Idea is to put order into the web by ranking pages by their degree of Authority or "Hubness".
- An Authority is a page pointed to by many important pages.
- Authority Weight = sum of Hub Weights from In-Links.
- A Hub is a page that points to many important pages:
- Hub Weight = sum of Authority Weights from Out-Links.
- Source:

http://www.cs.cornell.edu/home/kleinber/auth.pdf

15-22 _____ - Appl1

Computation of Hubs and Authorities

- Simplify computation by forcing sum of squares of weights to be 1.
- ightharpoonup Auth $_j=x_j=\sum_{i:(i,j)\in \mathrm{Edges}}\mathrm{Hub}_i.$
- \blacktriangleright Hub_i = $y_i = \sum_{j:(i,j) \in \text{Edges}} \text{Auth}_j$.
- ightharpoonup Let A= Adjacency matrix: $a_{ij}=1$ if $(i,j)\in \mathrm{Edges}$.
- $ightharpoonup y = Ax, x = A^Ty.$
- \blacktriangleright Iterate ... to leading eigenvectors of $A^TA \& AA^T$.
- Answer: Leading Singular Vectors!

Appl1