OF MINNESOTA TWIN CITIES

C S C I 5304

Fall 2021

COMPUTATIONAL ASPECTS OF MATRIX THEORY

Class time : MW 4:00 - 5:15 pm

Room: Keller 3-230 or Online

Instructor: Daniel Boley

Lecture notes:

http://www-users.cselabs.umn.edu/classes/Fall-2021/csci5304/

THE SINGULAR VALUE DECOMPOSITION (Cont.)

- The Pseudo-inverse
- Use of SVD for least-squares problems
- Application to regularization
- Numerical rank

Pseudo-inverse of an arbitrary matrix

Let $A = U \Sigma V^T$ which we rewrite as

$$A = egin{pmatrix} U_1 & U_2 \end{pmatrix} egin{pmatrix} \Sigma_1 & 0 \ 0 & 0 \end{pmatrix} egin{pmatrix} V_1^T \ V_2^T \end{pmatrix} = U_1 \Sigma_1 V_1^T$$

Then the pseudo inverse of
$$A$$
 is $A^\dagger = V_1 \Sigma_1^{-1} U_1^T = \sum_{j=1}^r rac{1}{\sigma_j} v_j u_j^T$

- The pseudo-inverse of A is the mapping from a vector b to the solution $\min_x \|Ax - b\|_2^2$ that has minimal norm (to be shown)
- In the full-rank overdetermined case, the normal equations yield

$$x = \underbrace{(A^T A)^{-1} A^T}_{A^{\dagger}} b$$

Least-squares problem via the SVD

Pb: $\min ||b - Ax||_2$ in general case. Consider SVD of A:

$$A = egin{pmatrix} U_1 & U_2 \end{pmatrix} egin{pmatrix} \Sigma_1 & 0 \ 0 & 0 \end{pmatrix} egin{pmatrix} V_1^T \ V_2^T \end{pmatrix} = \sum_{i=1}^r \sigma_i v_i u_i^T \end{pmatrix}$$

Find all possible least-squares solutions. Also find the one with min. 2-norm.

- 1) Express $m{x}$ in $m{V}$ basis : $m{x} = m{V}m{y} = [m{V}_1, \ m{V}_2] egin{pmatrix} m{y}_1 \ m{y}_2 \end{pmatrix}$
- 2) Then left multiply by $oldsymbol{U^T}$ to get

$$\|Ax-b\|_2^2 = \left\|egin{pmatrix} \Sigma_1 & 0 \ 0 & 0 \end{pmatrix} egin{pmatrix} oldsymbol{y}_1 \ oldsymbol{y}_2 \end{pmatrix} - egin{pmatrix} oldsymbol{U}_1^T b \ oldsymbol{U}_2^T b \end{pmatrix}
ight\|_2^2$$

- 3) Find all possible solutions in terms of $m{y} = [m{y}_1; m{y}_2]$
- What are **all** least-squares solutions to the above system? Among these which one has minimum norm?

Answer: From above, must have $y_1 = \Sigma_1^{-1} U_1^T b$ and $y_2 =$ anything (free).

Recall that:
$$egin{aligned} x &= [V_1,V_2] egin{pmatrix} y_1 \ y_2 \end{pmatrix} = V_1 y_1 + V_2 y_2 \ &= V_1 \Sigma_1^{-1} U_1^T b + V_2 y_2 \ &= A^\dagger b + V_2 y_2 \end{aligned}$$

- lacksquare Note: $A^\dagger b \in \operatorname{Ran}(A^T)$ and $V_2 y_2 \in \operatorname{Null}(A)$.
- Therefore: least-squares solutions are all of the form $A^\dagger b + w$ where $w \in \operatorname{Null}(A)$.
- ightharpoonup Smallest norm when $y_2=0$.

Minimum norm solution to $\min_x \|Ax - b\|_2^2$ satisfies $\Sigma_1 y_1 = U_1^T b, \ y_2 = 0.$ It is:

$$x_{LS}=V_1\Sigma_1^{-1}U_1^Tb=A^\dagger b$$

- If $A \in \mathbb{R}^{m \times n}$ what are the dimensions of $A^\dagger ?$, $A^\dagger A ?$, $AA^\dagger ?$
- Show that $A^{\dagger}A$ is an orthogonal projector. What are its range and null-space?
- \bigtriangleup Same questions for AA^{\dagger} .

Moore-Penrose Inverse

The pseudo-inverse of $oldsymbol{A}$ is given by

$$A^\dagger = V egin{pmatrix} \Sigma_1^{-1} & 0 \ 0 & 0 \end{pmatrix} U^T = \sum_{i=1}^r rac{v_i u_i^T}{\sigma_i}$$

Moore-Penrose conditions:

The pseudo inverse of a matrix is uniquely determined by these four conditions:

- (1) AXA = A (2) XAX = X(3) $(AX)^H = AX$ (4) $(XA)^H = XA$
- \blacktriangleright In the full-rank overdetermined case, $A^\dagger = (A^TA)^{-1}A^T$

Least-squares problems and the SVD

The SVD can give much information on solutions of overdetermined and underdetermined linear systems.

Let A be an m imes n matrix and $A = U \Sigma V^T$ its SVD with $r = \operatorname{rank}(A)$, $V = [v_1, \ldots, v_n]$ $U = [u_1, \ldots, u_m]$. Then

$$x_{LS} = \sum_{i=1}^r rac{u_i^T b}{\sigma_i} \ v_i$$

minimizes $\|b - Ax\|_2$ and has the smallest 2-norm among all possible minimizers. In addition,

$$ho_{LS} \equiv \|b - Ax_{LS}\|_2 = \|z\|_2$$
 with $z = [u_{r+1}, \ldots, u_m]^T b$

Least-squares problems and pseudo-inverses

A restatement of the first part of the previous result:

Consider the general linear least-squares problem

$$\min_{x \in S} \|x\|_2, \quad S = \{x \in \mathbb{R}^n \mid \|b - Ax\|_2 \min\}.$$

This problem always has a unique solution given by

$$x = A^{\dagger}b$$

£15

Consider the matrix:

$$A = egin{pmatrix} 1 & 0 & 2 & 0 \ 0 & 0 & -2 & 1 \end{pmatrix}$$

- Compute the thin SVD of A
- ullet Find the matrix $oldsymbol{B}$ of rank 1 which is the closest to the above matrix in the 2-norm sense.
- What is the pseudo-inverse of A?
- What is the pseudo-inverse of B?
- ullet Find the vector x of smallest norm which minimizes $\|b-Ax\|_2$ with $b=(1,1)^T$
- ullet Find the vector x of smallest norm which minimizes $\|b-Bx\|_2$ with $b=(1,1)^T$

Ill-conditioned systems and the SVD

- lacksquare Let A be m imes m and $A=U\Sigma V^T$ its SVD
- lacksquare Solution of Ax=b is $x=A^{-1}b=\sum_{i=1}^m rac{u_i^Tb}{\sigma_i}\ v_i$
- When A is very ill-conditioned, it has many small singular values. The division by these small σ_i 's will amplify any noise in the data. If $\tilde{b}=b+\epsilon$ then

$$A^{-1} ilde{b} = \sum_{i=1}^m rac{u_i^T b}{\sigma_i} \, v_i + \sum_{i=1}^m rac{u_i^T \epsilon}{\sigma_i} \, v_i$$

Result: solution could be completely meaningless.

Remedy: SVD regularization

Truncate the SVD by only keeping the $\sigma_i's$ that are $\geq au$, where au is a threshold

Gives the Truncated SVD solution (TSVD solution:)

$$x_{TSVD} = \sum_{\sigma_i \geq au} \; rac{u_i^T b}{\sigma_i} \; v_i$$

Many applications [e.g., Image and signal processing,..]

10-11

Numerical rank and the SVD

- Assuming the original matrix A is exactly of rank k the computed SVD of A will be the SVD of a nearby matrix A+E Can show: $|\hat{\sigma}_i \sigma_i| \leq \alpha \ \sigma_1 \underline{\mathbf{u}}$
- Result: zero singular values will yield small computed singular values and r larger sing. values.
- \blacktriangleright Reverse problem: *numerical rank* The ϵ -rank of A :

$$r_{\epsilon} = \min\{rank(B): B \in \mathbb{R}^{m imes n}, \|A - B\|_2 \leq \epsilon\},$$

- 🔼 Show that r_ϵ equals the number sing. values that are $>\!\epsilon$
- Show: r_{ϵ} equals the number of columns of A that are linearly independent for any perturbation of A with norm $\leq \epsilon$.
- \triangleright Practical problem : How to set ϵ ?

Pseudo inverses of full-rank matrices

Case 1:
$$m \geq n$$
 Then $A^\dagger = (A^TA)^{-1}A^T$

lacksquare Thin SVD is $m{A} = m{U}_1 m{\Sigma}_1 m{V}_1^T$ and $m{V}_1, m{\Sigma}_1$ are $m{n} imes m{n}$. Then:

$$(A^TA)^{-1}A^T = (V_1\Sigma_1^2V_1^T)^{-1}V_1\Sigma_1U_1^T \ = V_1\Sigma_1^{-2}V_1^TV_1\Sigma_1U_1^T \ = V_1\Sigma_1^{-1}U_1^T \ = A^\dagger$$

Example: Pseudo-inverse of $\begin{bmatrix} 3 & 1 \\ 1 & 2 \\ 2 & -1 \\ 0 & 1 \end{bmatrix}$ is?

10-13

Case 2:
$$m < n$$
 Then $A^\dagger = A^T (AA^T)^{-1}$

ightharpoonup Thin SVD is $A=U_1\Sigma_1V_1^T$. Now U_1,Σ_1 are m imes m and:

$$egin{aligned} A^T(AA^T)^{-1} &= V_1 \Sigma_1 U_1^T [U_1 \Sigma_1^2 U_1^T]^{-1} \ &= V_1 \Sigma_1 U_1^T U_1 \Sigma_1^{-2} U_1^T \ &= V_1 \Sigma_1 \Sigma_1^{-2} U_1^T \ &= V_1 \Sigma_1^{-1} U_1^T \ &= V_1 \Sigma_1^{-1} U_1^T \ &= A^\dagger \end{aligned}$$

Example: Pseudo-inverse of $\begin{pmatrix} 0 & 1 & 2 & 0 \\ 1 & 2 & -1 & 1 \end{pmatrix}$ is?

Mnemonic: The pseudo inverse of A is A^T completed by the inverse of the smaller of $(A^TA)^{-1}$ or $(AA^T)^{-1}$ where it fits (i.e., left or right)