
CSci 5271
Introduction to Computer Security
Day 22: Firewalls, NATs, and IDSes

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Firewalls and NAT boxes

Announcements intermission

Intrusion detection systems

Internet addition: middleboxes

Original design: middle of net is only routers
End-to-end principle

Modern reality: more functionality in the network

Security is one major driver

Security/connectivity tradeoff

A lot of security risk comes from a network
connection

Attacker could be anywhere in the world

Reducing connectivity makes security easier

Connectivity demand comes from end users

What a firewall is

Basically, a router that chooses not to forward some
traffic

Based on an a-priori policy

More complex architectures have multiple layers
DMZ: area between outer and inner layers, for
outward-facing services

Inbound and outbound control

Most obvious firewall use: prevent attacks from the
outside
Often also some control of insiders

Block malware-infected hosts
Employees wasting time on Facebook
Selling sensitive info to competitors
Nation-state Internet management

May want to log or rate-limit, not block

Default: deny

Usual allow-list approach: first, block everything

Then allow certain traffic

Basic: filter packets based on headers

More sophisticated: proxy traffic at a higher level

IPv4 address scarcity

Design limit of 232 hosts
Actually less for many reasons

Addresses becoming gradually more scarce over a
many-year scale

Some high-profile exhaustions in 2011

IPv6 adoption still quite low, occasional signs of
progress



Network address translation (NAT)

Middlebox that rewrites addresses in packets

Main use: allow inside network to use non-unique IP
addresses

RFC 1918: 10.*, 192.168.*, etc.
While sharing one outside IP address

Inside hosts not addressable from outside
De-facto firewall

Packet filtering rules

Match based on:
Source IP address
Source port
Destination IP address
Destination port
Packet flags: TCP vs. UDP, TCP ACK, etc.

Action, e.g. allow or block

Obviously limited in specificity

Client and server ports

TCP servers listen on well-known port numbers
Often < 1024, e.g. 22 for SSH or 80 for HTTP

Clients use a kernel-assigned random high port

Plain packet filter would need to allow all high-port
incoming traffic

Stateful filtering

In general: firewall rules depend on previously-seen
traffic

Key instance: allow replies to an outbound
connection

See: port 23746 to port 80

Allow incoming port 23746
To same inside host

Needed to make a NAT practical

Circuit-level proxying

Firewall forwards TCP connections for inside client

Standard protocol: SOCKS
Supported by most web browsers
Wrapper approaches for non-aware apps

Not much more powerful than packet-level filtering

Application-level proxying

Knows about higher-level semantics

Long history for, e.g., email, now HTTP most
important
More knowledge allows better filtering decisions

But, more effort to set up

Newer: “transparent proxy”
Pretty much a man-in-the-middle

Tunneling

Any data can be transmitted on any channel, if both
sides agree
E.g., encapsulate IP packets over SSH connection

Compare covert channels, steganography

Powerful way to subvert firewall
Some legitimate uses

Tunneling example: 2019 HA2



Outline

Firewalls and NAT boxes

Announcements intermission

Intrusion detection systems

Note to early readers

This is the section of the slides most likely to change
in the final version

If class has already happened, make sure you have
the latest slides for announcements

Outline

Firewalls and NAT boxes

Announcements intermission

Intrusion detection systems

Basic idea: detect attacks

The worst attacks are the ones you don’t even know
about
Best case: stop before damage occurs

Marketed as “prevention”

Still good: prompt response

Challenge: what is an attack?

Network and host-based IDSes

Network IDS: watch packets similar to firewall
But don’t know what’s bad until you see it
More often implemented offline

Host-based IDS: look for compromised process or
user from within machine

Signature matching

Signature is a pattern that matches known bad
behavior

Typically human-curated to ensure specificity

See also: anti-virus scanners

Anomaly detection

Learn pattern of normal behavior

“Not normal” is a sign of a potential attack

Has possibility of finding novel attacks

Performance depends on normal behavior too

Recall: FPs and FNs

False positive: detector goes off without real attack

False negative: attack happens without detection

Any detector design is a tradeoff between these
(ROC curve)



Signature and anomaly weaknesses

Signatures
Won’t exist for novel attacks
Often easy to attack around

Anomaly detection
Hard to avoid false positives
Adversary can train over time

Base rate problems

If the true incidence is small (low base rate), most
positives will be false

Example: screening test for rare disease

Easy for false positives to overwhelm admins

E.g., 100 attacks out of 10 million packets, 0.01% FP
rate

How many false alarms?

Adversarial challenges

FP/FN statistics based on a fixed set of attacks

But attackers won’t keep using techniques that are
detected
Instead, will look for:

Existing attacks that are not detected
Minimal changes to attacks
Truly novel attacks

Wagner and Soto mimicry attack

Host-based IDS based on sequence of syscalls

Compute A \M, where:
A models allowed sequences
M models sequences achieving attacker’s goals

Further techniques required:
Many syscalls made into NOPs
Replacement subsequences with similar effect

Next time

Malware and network denial of service


