
CSci 5271
Introduction to Computer Security
More crypto protocols and failures

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

More crypto protocols

Announcements intermission

More causes of crypto failure

Abstract protocols

Outline of what information is communicated in
messages

Omit most details of encoding, naming, sizes, choice of
ciphers, etc.

Describes honest operation
But must be secure against adversarial participants

Seemingly simple, but many subtle problems

Protocol notation

A! B : NB; fT0; B;NBgKB
A! B: message sent from Alice intended for Bob

B (after :): Bob’s name

f� � �gK: encryption with key K

Needham-Schroeder

Mutual authentication via nonce exchange, assuming
public keys (core):
A! B : fNA; AgEB
B! A : fNA; NBgEA
A! B : fNBgEB

Needham-Schroeder MITM

A! C : fNA; AgEC
C! B : fNA; AgEB
B! C : fNA; NBgEA
C! A : fNA; NBgEA
A! C : fNBgEC
C! B : fNBgEB

Certificates, Denning-Sacco

A certificate signed by a trusted third-party S binds
an identity to a public key

CA = SignS(A;KA)

Suppose we want to use S in establishing a session

key KAB:
A! S : A;B

S! A : CA; CB

A! B : CA; CB; fSignA(KAB)gKB

Attack against Denning-Sacco

A! S : A;B

S! A : CA; CB

A! B : CA; CB; fSignA(KAB)gKB
B! S : B;C

S! B : CB; CC

B! C : CA; CC; fSignA(KAB)gKC
By re-encrypting the signed key, Bob can pretend to be
Alice to Charlie



Envelopes analogy

Encrypt then sign, or vice-versa?

On paper, we usually sign inside an envelope, not
outside. Two reasons:

Attacker gets letter, puts in his own envelope (c.f. attack
against X.509)
Signer claims “didn’t know what was in the envelope”
(failure of non-repudiation)

Design robustness principles

Use timestamps or nonces for freshness

Be explicit about the context

Don’t trust the secrecy of others’ secrets

Whenever you sign or decrypt, beware of being an
oracle

Distinguish runs of a protocol

Implementation principles

Ensure unique message types and parsing

Design for ciphers and key sizes to change

Limit information in outbound error messages

Be careful with out-of-order messages

Outline

More crypto protocols

Announcements intermission

More causes of crypto failure

Note to early readers

This is the section of the slides most likely to change
in the final version

If class has already happened, make sure you have
the latest slides for announcements

Outline

More crypto protocols

Announcements intermission

More causes of crypto failure

Random numbers and entropy

Cryptographic RNGs use cipher-like techniques to
provide indistinguishability
But rely on truly random seeding to stop brute force

Extreme case: no entropy ! always same “randomness”

Modern best practice: seed pool with 256 bits of
entropy

Suitable for security levels up to 2256

Netscape RNG failure

Early versions of Netscape SSL (1994-1995) seeded
with:

Time of day
Process ID
Parent process ID

Best case entropy only 64 bits
(Not out of step with using 40-bit encryption)

But worse because many bits guessable



Debian/OpenSSL RNG failure (1)

OpenSSL has pretty good scheme using
/dev/urandom

Also mixed in some uninitialized variable values
“Extra variation can’t hurt”

From modern perspective, this was the original sin
Remember undefined behavior discussion?

But had no immediate ill effects

Debian/OpenSSL RNG failure (2)

Debian maintainer commented out some lines to fix
a Valgrind warning

“Potential use of uninitialized value”

Accidentally disabled most entropy (all but 16 bits)

Brief mailing list discussion didn’t lead to
understanding

Broken library used for �2 years before discovery

Detected RSA/DSA collisions
2012: around 1% of the SSL keys on the public net
are breakable

Some sites share complete keypairs
RSA keys with one prime in common (detected by
large-scale GCD)

One likely culprit: insufficient entropy in key
generation

Embedded devices, Linux /dev/urandom vs.
/dev/random

DSA signature algorithm also very vulnerable

Newer factoring problem (CCS’17)

An Infineon RSA library used primes of the form
p = k � M+ (65537a mod M)

Smaller problems: fingerprintable, less entropy

Major problem: can factor with a variant of
Coppersmith’s algoritm

E.g., 3 CPU months for a 1024-bit key

Side-channel attacks

Timing analysis:
Number of 1 bits in modular exponentiation
Unpadding, MAC checking, error handling
Probe cache state of AES table entries

Power analysis
Especially useful against smartcards

Fault injection

WEP “privacy”

First WiFi encryption standard: Wired Equivalent
Privacy (WEP)

F&S: designed by a committee that contained no
cryptographers
Problem 1: note “privacy”: what about integrity?

Nope: stream cipher + CRC = easy bit flipping

WEP shared key

Single key known by all parties on network

Easy to compromise

Hard to change

Also often disabled by default

Example: a previous employer

WEP key size and IV size

Original sizes: 40-bit shared key (export restrictions)
plus 24-bit IV = 64-bit RC4 key

Both too small

128-bit upgrade kept 24-bit IV
Vague about how to choose IVs
Least bad: sequential, collision takes hours
Worse: random or everyone starts at zero



WEP RC4 related key attacks

Only true crypto weakness

RC4 “key schedule” vulnerable when:
RC4 keys very similar (e.g., same key, similar IV)
First stream bytes used

Not a practical problem for other RC4 users like SSL
Key from a hash, skip first output bytes

Newer problem with WPA (CCS’17)

Session key set up in a 4-message handshake

Key reinstallation attack: replay #3
Causes most implementations to reset nonce and replay
counter
In turn allowing many other attacks
One especially bad case: reset key to 0

Protocol state machine behavior poorly described in
spec

Outside the scope of previous security proofs

Trustworthiness of primitives

Classic worry: DES S-boxes

Obviously in trouble if cipher chosen by your
adversary

In a public spec, most worrying are unexplained
elements

Best practice: choose constants from well-known
math, like digits of �

Dual EC DRBG (1)

Pseudorandom generator in NIST standard, based on
elliptic curve

Looks like provable (slow enough!) but strangely no
proof

Specification includes long unexplained constants

Academic researchers find:
Some EC parts look good
But outputs are statistically distinguishable

Dual EC DRBG (2)

Found 2007: special choice of constants allows
prediction attacks

Big red flag for paranoid academics

Significant adoption in products sold to US govt.
FIPS-140 standards

Semi-plausible rationale from RSA (EMC)

NSA scenario basically confirmed by Snowden leaks
NIST and RSA immediately recommend withdrawal


