CSci 5271
Introduction to Computer Security
Web security, part 1

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

The web from a security perspective

Once upon a time: the static web

©) HTTP: stateless file download protocol
® TCR usually using port 80
©) HTML: markup language for text with formatting and
links
©) All pages public, so no need for authentication or
encryption

Web applications

£) The modern web depends heavily on active software

£) Static pages have ads, paywalls, or “Edit” buttons

£) Many web sites are primarily forms or storefronts

) Web hosted versions of desktop apps like word
processing

Server programs

©) Could be anything that outputs HTML
©) In practice, heavy use of databases and frameworks
£) Wide variety of commercial, open-source, and

custom-written
) Flexible scripting languages for ease of development
® PHP, Ruby, Perl, etc.

Client-side programming

£) Java: nice language, mostly moved to other uses

£) ActiveX: Windows-only binaries, no sandboxing
® Glad to see it on the way out
£) Flash and Silverlight: most important use is DRM-ed
video

©) Core lanquage: JavaScript

JavaScript and the DOM

£) JavaScript (JS) is a dynamically-typed prototype-O0O
language
® No real similarity with Java
©) Document Object Model (DOM): lets JS interact with
pages and the browser

©) Extensive security checks for untrusted-code model

Same-origin policy

©) Origin is a tuple (scheme, host, port)
® Eg, (http, www.umn.edu, 80)
£) Basic JS rule: interaction is allowed only with the
same origin
) Different sites are (mostly) isolated applications

GET, POST, and cookies

£) GET request loads a URL, may have parameters
delimited with ?, &, =
® Standard: should not have side-effects
£) POST request originally for forms
® Can be larger, more hidden, have side-effects
£) Cookie: small token chosen by server, sent back on
subsequent requests to same domain

User and attack models

£) "Web attacker” owns their own site
(www.attacker.com)
® And users sometimes visit it
® Realistic reasons: ads, SEO
£) "Network attacker” can view and sniff unencrypted
data
® Unprotected coffee shop WiFi

Outline

SQL injection

Relational model and SQL

£) Relational databases have tables with rows and
single-typed columns

£) Used in web sites (and elsewhere) to provide
scalable persistent storage

©) Allow complex queries in a declarative language SQL

Example SQL queries

€) SELECT name, grade FROM Students WHERE
grade < 60 ORDER BY name;

) UPDATE Votes SET count = count + 1 WHERE
candidate = ’John’;

Template: injection attacks

©) Your program interacts with an interpreted language

£) Untrusted data can be passed to the interpreter

£) Attack data can break parsing assumptions and
execute arbitrary commands

SQL + injection

£) Why is this named most critical web app. risk?
£) Easy mistake to make systematically
£) Can be easy to exploit

) Database often has high-impact contents
® Eg, logins or credit cards on commerce site

Strings do not respect syntax

£) Key problem: assembling commands as strings
) "WHERE name = ’$name’;"

£) Looks like $name is a string

©) Try $name = "me’ OR grade > 80; —-"

Using tautologies

) Tautology: formula that's always true
r) Often convenient for attacker to see a whole table
r) Classic: OR 1=1

Non-string interfaces

£) Best fix: avoid constructing queries as strings
£) SQL mechanism: prepared statement
® Original motivation was performance
£) Web languages/frameworks often provide other
syntax

Retain functionality: escape

©) Sanitizing data is transforming it to prevent an attack

) Escaped data is encoded to match language rules
for literal
mEg,\"and\ninC
©) But many pitfalls for the unwary:

) Differences in escape syntax between servers
® Must use right escape for context: not everything's a
string

Lazy sanitization: allow-listing

£) Allow only things you know to be safe/intended

£ Error or delete anything else

©) Short allow-list is easy and relatively easy to secure
£ Eg, digits only for non-negative integer

£) But, tends to break benign functionality

Poor idea: deny-listing

) Space of possible attacks is endless, don't try to
think of them all

£) Want to guess how many more comment formats
SQL has?

©) Particularly silly: denying 1=1

Attacking without the program

) Often web attacks don't get to see the program
® Not even binary, it's on the server
£) Surmountable obstacle:

® Guess natural names for columns
® Harvest information from error messages

Blind SQL injection

©) Attacking with almost no feedback
©) Common: only “error” or “no error”

£) One bit channel you can make yourself: if (x) delay
10 seconds

©) Trick to remember: go one character at a time

Injection beyond SQL

£) XPath/XQuery: queries on XML data

©) LDAP: queries used for authentication
£) Shell commands: example from EX. 1

£) More web examples to come

Outline

Announcements intermission

Note to early readers

£) This is the section of the slides most likely to change
in the final version

£ If class has already happened, make sure you have
the latest slides for announcements

Outline

Web authentication failures

Per-website authentication

£) Many web sites implement their own login systems
+ If users pick unique passwords, little systemic risk
— Inconvenient, many will reuse passwords
Lots of functionality each site must implement correctly
— Without enough framework support, many possible pitfalls

Building a session

©) HTTP was originally stateless, but many sites want
stateful login sessions

£) Built by tying requests together with a shared
session ID

©) Must protect confidentiality and integrity

Session ID: what

£) Must not be predictable
® Not a sequential counter
©) Should ensure freshness
® Eg, limited validity window
£ If encoding data in ID, must be unforgeable

® Eg, data with properly used MAC
® Negative example: crypt(username || server secret)

Session ID: where

£) Session IDs in URLs are prone to leaking
® Including via user cut-and-paste
) Usual choice: non-persistent cookie
® Against network attacker, must send only under HTTPS
©) Because of CSRF (next time), should also have a
non-cookie unique ID

Session management

£) Create new session ID on each login
£ Invalidate session on logout

©) Invalidate after timeout

® Usability / security tradeoff
® Needed to protect users who fail to log out from public
browsers

Account management

©) Limitations on account creation
® CAPTCHA? Outside email address?
£) See previous discussion on hashed password
storage
©) Automated password recovery

® Usually a weak spot
® But, practically required for large system

Client and server checks

€) For usability, interface should show what's possible

©) But must not rely on client to perform checks

£) Attackers can read/modify anything on the client
side

£) Easy example: item price in hidden field

Direct object references

£) Seems convenient: query parameter names
resource directly
® Eg, database key, filename (path traversal)
©) Easy to forget to validate on each use

©) Alternative: indirect reference like per-session table

® Not fundamentally more secure, but harder to forget
check

Function-level access control

£) Eg. pages accessed by URLs or interface buttons

£) Must check each time that user is authorized
® Attack: find URL when authorized, reuse when logged off

©) Helped by consistent structure in code

