
CSci 5271
Introduction to Computer Security

Web security, part 2
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline
The web from a security perspective, cont’d

SQL injection

Web authentication

Cross-site scripting

More cross-site risks

Confidentiality and privacy

Even more web risks

JavaScript and the DOM

JavaScript (JS) is a dynamically-typed prototype-OO
language

No real similarity with Java

Document Object Model (DOM): lets JS interact with
pages and the browser

Extensive security checks for untrusted-code model

Same-origin policy

Origin is a tuple (scheme, host, port)
E.g., (http, www.umn.edu, 80)

Basic JS rule: interaction is allowed only with the
same origin

Different sites are (mostly) isolated applications

GET, POST, and cookies

GET request loads a URL, may have parameters
delimited with ?, &, =

Standard: should not have side-effects

POST request originally for forms
Can be larger, more hidden, have side-effects

Cookie: small token chosen by server, sent back on
subsequent requests to same domain

User and attack models

“Web attacker” owns their own site
(www.attacker.com)

And users sometimes visit it
Realistic reasons: ads, SEO

“Network attacker” can view and sniff unencrypted
data

Unprotected coffee shop WiFi

Outline
The web from a security perspective, cont’d

SQL injection

Web authentication

Cross-site scripting

More cross-site risks

Confidentiality and privacy

Even more web risks

Relational model and SQL

Relational databases have tables with rows and
single-typed columns

Used in web sites (and elsewhere) to provide
scalable persistent storage

Allow complex queries in a declarative language SQL

Example SQL queries

SELECT name, grade FROM Students WHERE

grade < 60 ORDER BY name;

UPDATE Votes SET count = count + 1 WHERE

candidate = 'John';

Template: injection attacks

Your program interacts with an interpreted language

Untrusted data can be passed to the interpreter

Attack data can break parsing assumptions and
execute arbitrary commands

SQL + injection

Why is this named most critical web app. risk?

Easy mistake to make systematically

Can be easy to exploit

Database often has high-impact contents
E.g., logins or credit cards on commerce site

Strings do not respect syntax

Key problem: assembling commands as strings

"WHERE name = '$name';"

Looks like $name is a string

Try $name = "me' OR grade > 80; --"

Using tautologies

Tautology: formula that’s always true

Often convenient for attacker to see a whole table

Classic: OR 1=1

Non-string interfaces

Best fix: avoid constructing queries as strings

SQL mechanism: prepared statement
Original motivation was performance

Web languages/frameworks often provide other
syntax

Retain functionality: escape

Sanitizing data is transforming it to prevent an attack

Escaped data is encoded to match language rules
for literal

E.g., \" and \n in C

But many pitfalls for the unwary:
Differences in escape syntax between servers
Must use right escape for context: not everything’s a
string

Lazy sanitization: allow-listing

Allow only things you know to be safe/intended

Error or delete anything else

Short allow-list is easy and relatively easy to secure

E.g., digits only for non-negative integer

But, tends to break benign functionality

Poor idea: deny-listing

Space of possible attacks is endless, don’t try to
think of them all

Want to guess how many more comment formats
SQL has?

Particularly silly: denying 1=1

Attacking without the program

Often web attacks don’t get to see the program
Not even binary, it’s on the server

Surmountable obstacle:
Guess natural names for columns
Harvest information from error messages

Blind SQL injection

Attacking with almost no feedback

Common: only “error” or “no error”

One bit channel you can make yourself: if (x) delay
10 seconds

Trick to remember: go one character at a time

Injection beyond SQL

XPath/XQuery: queries on XML data

LDAP: queries used for authentication

Shell commands: example from Ex. 1

More web examples to come

Outline
The web from a security perspective, cont’d

SQL injection

Web authentication

Cross-site scripting

More cross-site risks

Confidentiality and privacy

Even more web risks

Per-website authentication

Many web sites implement their own login systems
+ If users pick unique passwords, little systemic risk
- Inconvenient, many will reuse passwords
- Lots of functionality each site must implement correctly
- Without enough framework support, many possible pitfalls

Building a session

HTTP was originally stateless, but many sites want
stateful login sessions

Built by tying requests together with a shared
session ID

Must protect confidentiality and integrity

Session ID: what

Must not be predictable
Not a sequential counter

Should ensure freshness
E.g., limited validity window

If encoding data in ID, must be unforgeable
E.g., data with properly used MAC
Negative example: crypt(username k server secret)

Session ID: where

Session IDs in URLs are prone to leaking
Including via user cut-and-paste

Usual choice: non-persistent cookie
Against network attacker, must send only under HTTPS

Because of CSRF (coming up), should also have a
non-cookie unique ID

Session management

Create new session ID on each login

Invalidate session on logout

Invalidate after timeout
Usability / security tradeoff
Needed to protect users who fail to log out from public
browsers

Outline
The web from a security perspective, cont’d

SQL injection

Web authentication

Cross-site scripting

More cross-site risks

Confidentiality and privacy

Even more web risks

XSS: HTML/JS injection

Note: CSS is “Cascading Style Sheets”

Another use of injection template

Attacker supplies HTML containing JavaScript (or
occasionally CSS)
OWASP’s most prevalent weakness in 2017

A category unto itself
Easy to commit in any dynamic page construction

Why XSS is bad (and named that)

attacker.com can send you evil JS directly

But XSS allows access to bank.com data

Violates same-origin policy

Not all attacks actually involve multiple sites

Reflected XSS

Injected data used immediately in producing a page

Commonly supplied as query/form parameters

Classic attack is link from evil site to victim site

Persistent XSS

Injected data used to produce page later

For instance, might be stored in database

Can be used by one site user to attack another user
E.g., to gain administrator privilege

DOM-based XSS

Injection occurs in client-side page construction

Flaw at least partially in code running on client

Many attacks involve mashups and inter-site
communication

No string-free solution

For server-side XSS, no way to avoid string
concatenation
Web page will be sent as text in the end

This is the only standard interface

XSS is an especially hard kind of injection

Danger: complex language embedding

JS and CSS are complex languages in their own
right
Can appear in various places with HTML

But totally different parsing rules

Example: "..." used for HTML attributes and JS
strings

What happens when attribute contains JS?

Danger: forgiving parsers

History: handwritten HTML, browser competition

Many syntax mistakes given “likely” interpretations

Handling of incorrect syntax was not standardized

Sanitization: plain text only

Easiest case: no tags intended, insert at document
text level

Escape HTML special characters with entities like
< for <

OWASP recommendation: & < > " ' /

Sanitization: context matters

An OWASP document lists 5 places in a web page
you might insert text

For the rest, “don’t do that”

Each one needs a very different kind of escaping

Sanitization: tag whitelisting

In some applications, want to allow benign markup
like

But, even benign tags can have JS attributes

Handling well essentially requires an HTML parser
But with an adversarial-oriented design

Don’t deny-list

Browser capabilities continue to evolve

Attempts to list all bad constructs inevitably
incomplete

Even worse for XSS than other injection attacks

Filter failure: one-pass delete

Simple idea: remove all occurrences of <script>

What happens to <scr<script>ipt>?

Filter failure: UTF-7

You may have heard of UTF-8
Encode Unicode as 8-bit bytes

UTF-7 is similar but uses only ASCII

Encoding can be specified in a <meta> tag, or some
browsers will guess

+ADw-script+AD4-

Filter failure: event handlers

Put this on something the user will be tempted to
click on

There are more than 100 handlers like this
recognized by various browsers

Use good libraries

Coding your own defenses will never work

Take advantage of known good implementations

Best case: already built into your framework
Disappointingly rare

Content Security Policy

New HTTP header, W3C candidate recommendation

Lets site opt-in to stricter treatment of embedded
content, such as:

No inline JS, only loaded from separate URLs
Disable JS eval et al.

Has an interesting violation-reporting mode

Outline
The web from a security perspective, cont’d

SQL injection

Web authentication

Cross-site scripting

More cross-site risks

Confidentiality and privacy

Even more web risks

HTTP header injection

Untrusted data included in response headers

Can include CRLF and new headers, or premature
end to headers

AKA “response splitting”

Content sniffing

Browsers determine file type from headers,
extension, and content-based guessing

Latter two for � 1% server errors

Many sites host “untrusted” images and media

Inconsistencies in guessing lead to a kind of XSS
E.g., “chimera” PNG-HTML document

Cross-site request forgery

Certain web form on bank.com used to wire money

Link or script on evil.com loads it with certain
parameters

Linking is exception to same-origin

If I’m logged in, money sent automatically

Confused deputy, cookies are ambient authority

CSRF prevention

Give site’s forms random-nonce tokens
E.g., in POST hidden fields
Not in a cookie, that’s the whole point

Reject requests without proper token
Or, ask user to re-authenticate

XSS can be used to steal CSRF tokens

Open redirects

Common for one page to redirect clients to another

Target should be validated
With authentication check if appropriate

Open redirect: target supplied in parameter with no
checks

Doesn’t directly hurt the hosting site
But reputation risk, say if used in phishing
We teach users to trust by site

Outline
The web from a security perspective, cont’d

SQL injection

Web authentication

Cross-site scripting

More cross-site risks

Confidentiality and privacy

Even more web risks

Site perspective

Protect confidentiality of authenticators
Passwords, session cookies, CSRF tokens

Duty to protect some customer info
Personally identifying info (“identity theft”)
Credit-card info (Payment Card Industry Data Security
Standards)
Health care (HIPAA), education (FERPA)
Whatever customers reasonably expect

You need to use SSL

Finally coming around to view that more sites need
to support HTTPS

Special thanks to WiFi, NSA

If you take credit cards (of course)

If you ask users to log in
Must be protecting something, right?
Also important for users of Tor et al.

Server-side encryption

Also consider encrypting data “at rest”

(Or, avoid storing it at all)

Provides defense in depth
Reduce damage after another attack

May be hard to truly separate keys
OWASP example: public key for website ! backend
credit card info

Adjusting client behavior

HTTPS and password fields are basic hints

Consider disabling autocomplete
Usability tradeoff, save users from themselves
Finally standardized in HTML5

Consider disabling caching
Performance tradeoff
Better not to have this on user’s disk
Or proxy? You need SSL

User vs. site perspective

User privacy goals can be opposed to site goals

Such as in tracking for advertisements

Browser makers can find themselves in the middle
Of course, differ in institutional pressures

Third party content / web bugs

Much tracking involves sites other than the one in
the URL bar

For fun, check where your cookies are coming from

Various levels of cooperation

Web bugs are typically 1x1 images used only for
tracking

Cookies arms race

Privacy-sensitive users like to block and/or delete
cookies

Sites have various reasons to retain identification

Various workarounds:
Similar features in Flash and HTML5
Various channels related to the cache
Evercookie: store in n places, regenerate if subset are
deleted

Browser fingerprinting

Combine various server or JS-visible attributes
passively

User agent string (10 bits)
Window/screen size (4.83 bits)
Available fonts (13.9 bits)
Plugin verions (15.4 bits)

(Data from panopticlick.eff.org, far from exhaustive)

History stealing

History of what sites you’ve visited is not supposed
to be JS-visible
But, many side-channel attacks have been possible

Query link color
CSS style with external image for visited links
Slow-rendering timing channel
Harvesting bitmaps
User perception (e.g. fake CAPTCHA)

Browser and extension choices

More aggressive privacy behavior lives in extensions
Disabling most JavaScript (NoScript)
HTTPS Everywhere (allow-list)
Tor Browser Bundle

Default behavior is much more controversial
Concern not to kill advertising support as an economic
model

Outline
The web from a security perspective, cont’d

SQL injection

Web authentication

Cross-site scripting

More cross-site risks

Confidentiality and privacy

Even more web risks

Misconfiguration problems

Default accounts

Unneeded features

Framework behaviors
Don’t automatically create variables from query fields

Openness tradeoffs

Error reporting
Few benign users want to see a stack backtrace

Directory listings
Hallmark of the old days

Readable source code of scripts
Doesn’t have your DB password in it, does it?

Using vulnerable components

Large web apps can use a lot of third-party code

Convenient for attackers too
OWASP: two popular vulnerable components downloaded
22m times

Hiding doesn’t work if it’s popular

Stay up to date on security announcements

Clickjacking

Fool users about what they’re clicking on
Circumvent security confirmations
Fabricate ad interest

Example techniques:
Frame embedding
Transparency
Spoof cursor
Temporal “bait and switch”

Crawling and scraping

A lot of web content is free-of-charge, but
proprietary

Yours in a certain context, if you view ads, etc.

Sites don’t want it downloaded automatically (web
crawling)

Or parsed and user for another purpose (screen
scraping)

High-rate or honest access detectable

