CSci 5271
Introduction to Computer Security
Day 15: Cryptography part 1. symmetric key

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Some classic network attacks, contd

ARP spoofing

©) Impersonate other hosts on local network level

©) Typical ARP implementations stateless, don't mind
changes
©) Now you get victim's traffic, can read, modify, resend

rlogin and reverse DNS

£ rlogin uses reverse DNS to see if originating host is
on whitelist

£) How can you attack this mechanism with an honest
source IP address?

rlogin and reverse DNS

©) rlogin uses reverse DNS to see if originating host is
on whitelist

©) How can you attack this mechanism with an honest
source IP address?

©) Remember, ownership of reverse-DNS is by IP
address

Outline

Crypto basics

-ography, -ology, -analysis

©) Cryptography (narrow sense): designing encryption
o) Cryptanalysis: breaking encryption

©) Cryptology: both of the above

£) Code (narrow sense). word-for-concept substitution
o) Cipher: the “"codes” we actually care about

Caesar cipher

£) Advance three letters in alphabet:
A—-D,B—E,...

) Decrypt by going back three letters
£ Internet-era variant: rot-13
£) Easy to break if you know the principle

Keys and Kerckhoffs's principle

©) The only secret part of the cipher is a key

©) Security does not depend on anything else being
secret

£) Modern (esp. civilian, academic) crypto embraces
openness quite strongly

Symmetric vs. public key

£) Symmetric key (today’s lecture): one key used by all
participants
£) Public key: one key kept secret, another published

® Techniques invented in 1970s
® Makes key distribution easier
® Depends on fancier math

Goal: secure channel

©) Leaks no content information
® Not protected: size, timing
£) Messages delivered intact and in order
® Or not at all
©) Even if an adversary can read, insert, and delete
traffic

One-time pad

£) Secret key is truly random data as long as message

£) Encrypt by XOR (more generally addition mod
alphabet size)

£) Provides perfect, “information-theoretic” secrecy

£) No way to get around key size requirement

Computational security

£) More realistic: assume adversary has a limit on
computing power
©) Secure if breaking encryption is computationally
infeasible
® E.g, exponential-time brute-force search

©) Ties cryptography to complexity theory

Key sizes and security levels

o) Difficulty measured in powers of two, ignore small
constant factors

£) Power of attack measured by number of steps, aim
for better than brute force

© 232 definitely too easy, probably 2%* too

©) Modern symmetric key size: at least 2'%8

Crypto primitives

£) Base complicated systems on a minimal number of
simple operations

) Designed to be fast, secure in wide variety of uses

£) Study those primitives very intensely

Attacks on encryption

£) Known ciphertext
® Weakest attack

©) Known plaintext (and corresponding ciphertext)
£) Chosen plaintext

©) Chosen ciphertext (and plaintext)
® Strongest version: adaptive

Certificational attacks

£) Good primitive claims no attack more effective than
brute force
©) Any break is news, even if it's not yet practical
® Canary in the coal mine

o Eg, 2'%01 attack against AES-128
) Also watched: attacks against simplified variants

Fundamental ignorance

£) We don't really know that any computational
cryptosystem is secure

£ Security proof would be tantamount to proving
P # NP

£) Crypto is fundamentally more uncertain than other
parts of security

Relative proofs

£) Prove security under an unproved assumption
©) In symmetric crypto, prove a construction is secure
if the primitive is
® Often the proof looks like: if the construction is insecure,
so is the primitive
£) Can also prove immunity against a particular kind of
attack

Random oracle paradigm

£) Assume ideal model of primitives: functions selected
uniformly from a large space
® Anderson: elves in boxes
£) Not theoretically sound; assumption cannot be
satisfied

£) But seems to be safe in practice

Pseudorandomness and distinguishers

£) Claim: primitive cannot be distinguished from a truly
random counterpart
® In polynomial time with non-negligible probability
£) We can build a distinguisher algorithm to exploit any
weakness
) Slightly too strong for most practical primitives, but a
good goal

Open standards

£) How can we get good primitives?

£) Open-world best practice: run competition, invite
experts to propose then attack

£) Run by neutral experts, eg. US NIST

£) Recent good examples: AES, SHA-3

A certain three-letter agency

©) National Security Agency (NSA): has primary
responsibility for “signals intelligence”
) Dual-mission tension:

® Break the encryption of everyone in the world
® Help US encryption not be broken by foreign powers

Outline

Stream ciphers

Stream ciphers

) Closest computational version of one-time pad

©) Key (or seed) used to generate a long
pseudorandom bitstream

) Closely related: cryptographic RNG

Shift register stream ciphers

©) Linear-feedback shift register (LFSR): easy way to
generate long pseudorandom sequence
® But linearity allows for attack

£) Several ways to add non-linearity
£ Common in constrained hardware, poor security
record

RC4

©) Fast, simple, widely used software stream cipher
® Previously a trade secret, also "ARCFOUR”
©) Many attacks, none yet fatal to careful users (eg.
TLS)
® Famous non-careful user: WEP

©) Now deprecated, not recommended for new uses

Encryption £ integrity

£) Encryption protects secrecy, not message integrity

£) For constant-size encryption, changing the
ciphertext just creates a different plaintext

£) How will your system handle that?
£) Always need to take care of integrity separately

Stream cipher mutability

©) Strong example of encryption vs. integrity

©) In stream cipher, flipping a ciphertext bit flips the
corresponding plaintext bit, only

©) Very convenient for targeted changes

Salsa and ChaCha

£) Published by Daniel Bernstein 2007-2008
£) Stream cipher with random access to stream
® Related to counter mode discussed later
©) Fast on general-purpose CPUs without specialized
hardware
£) Adopted as option for TLS and SSH
® Prominent early adopter: Chrome on Android

Stream cipher assessment

©) Currently out of fashion as a primitive in software

©) Not inherently insecure
® Other common pitfall: must not reuse key(stream)

Outline

Block ciphers and modes of operation

Basic idea

©) Encryption/decryption for a fixed sized block

©) Insecure if block size is too small
® Barely enough: 64 bits; current standard: 128

©) Reversible, so must be one-to-one and onto function

Pseudorandom permutation

£) Ideal model: key selects a random invertible function
£ lLe, permutation (PRP) on block space
® Note: not permutation on bits

£) "Strong” PRP: distinguisher can decrypt as well as
encrypt

Confusion and diffusion

£) Basic design principles articulated by Shannon

) Confusion: combine elements so none can be
analyzed individually

) Diffusion: spread the effect of one symbol around to
others

) lterate multiple rounds of transformation

Substitution/permutation network

©) Parallel structure combining reversible elements:
£) Substitution: invertible lookup table (*S-box”)
£) Permutation: shuffle bits

AES

©) Advanced Encryption Standard: NIST contest 2001
® Developed under the name Rijndael

©) 128-bit block, 128/192/256-bit key

£) Fast software implementation with lookup tables (or
dedicated insns)
©) Allowed by US government up to Top Secret

Feistel cipher

£) Split block in half, operate in turn:
(Lis1, Rip1) = (Ri, Li ® F(Ry, Ky))
©) Key advantage: F need not be invertible
® Also saves space in hardware
£) Luby-Rackoff: if F is pseudo-random, 4 or more
rounds gives a strong PRP

DES

©) Data Encryption Standard: AES predecessor
1977-2005

£) 64-bit block, 56-bit key

©) Implementable in 70s hardware, not terribly fast in
software

) Triple DES variant still used in places

Some DES history

©) Developed primarily at IBM, based on an earlier
cipher named “Lucifer”
) Final spec helped and “helped” by the NSA
® Argued for smaller key size
® S-boxes tweaked to avoid a then-secret attack

©) Eventually victim to brute-force attack

DES brute force history

1977 est. $20m cost custom hardware
1993 est. $Im cost custom hardware
1997 distributed software break

1998 $250k built ASIC hardware

2006 $10k FPGAs

2012 as-a-service against MS-CHAPv2

Double encryption?

) Combine two different block ciphers?
® Belt and suspenders

) Anderson: don't do it
) FS&K: could do it, not a recommendation

£) Maurer and Massey (JCrypt'93): might only be as
strong as first cipher

Modes of operation

£) How to build a cipher for arbitrary-length data from a
block cipher
©) Many approaches considered
® For some reason, most have three-letter acronyms
©) More recently: properties susceptible to relative
proof

ECB

) Electronic CodeBook

) Split into blocks, apply cipher to each one individually
) Leaks equalities between plaintext blocks

) Almost never suitable for general use

Do not use ECB

CBC

) Cipher Block Chaining
0Ci=E(Pi® Cin)
) Probably most popular in current systems

) Plaintext changes propagate forever, ciphertext
changes only one block

CBC: getting an IV

) C, is called the initialization vector (IV)
® Must be known for decryption
©) IV should be random-looking

® To prevent first-block equalities from leaking (lesser
version of ECB problem)

£ Common approaches

® Generate at random
® Encrypt a nonce

Stream modes: OFB, CTR

) Output FeedBack: produce keystream by repeatedly
encrypting the IV
® Danger: collisions lead to repeated keystream
) Counter: produce from encryptions of an
incrementing value

® Recently becoming more popular: allows parallelization
and random access

Outline

Hash functions and MACs

Ideal model

©) Ideal crypto hash function: pseudorandom function
® Arbitrary input, fixed-size output
£) Simplest kind of elf in box, theoretically very
convenient
£) But large gap with real systems: better practice is to
target particular properties

Kinds of attacks

©) Pre-image, “inversion”: given y, find x such that
H(x) =y

©) Second preimage, targeted collision: given x, H(x),
find x" # x such that H(x') = H(x)

) (Free) collision: find x;, x, such that H(x;) = H(x;)

Birthday paradox and attack

£) There are almost certainly two people in this
classroom with the same birthday

o n people have () = ©(n?) pairs
©) So only about \/n expected for collision
£) "Birthday attack” finds collisions in any function

Security levels

) For function with k-bit output:

£) Preimage and second preimage should have
complexity 2%

) Collision has complexity 2/2

©) Conservative: use hash function twice as big as

block cipher key
® Though if you're paranoid, cipher blocks can repeat too

Non-cryptographic hash functions

£) The ones you probably use for hash tables

£) CRCs, checksums

£) Output too small, but also not resistant to attack
£ Eqg., CRC is linear and algebraically nice

Short hash function history

£) On the way out: MD5 (128 bit)
® Flaws known, collision-finding now routine

£) SHA(-Oy: first from NIST/NSA, quickly withdrawn
® Likely flaw discovered 3 years later

£) SHA-I: fixed SHA-O, 160-bit output.

) 2% collision attack described in 2013
® First public collision found (using 6.5 kCPU yr) in 2017

Length extension problem

£) MD5, SHA|, etc., computed left to right over blocks
£) Can sometimes compute H(a || b) in terms of
H(a)
® || means bit string concatenation

£) Makes many PRF-style constructions insecure

SHA-2 and SHA-3

£) SHA-2: evolutionary, larger, improvement of SHA-1
® Exists as SHA-(224, 256,384,512}
® But still has length-extension problem
£) SHA-3: chosen recently in open competition like AES

® Formerly known as Keccak, official standard Aug. 2015
® New design, fixes length extension
® Not yet very widely used

MAC: basic idea

£) Message authentication code: similar to hash
function, but with a key

) Adversary without key cannot forge MACs

£) Strong definition: adversary cannot forge anything,
even given chosen-message MACs on other
messages

CBC-MAC construction

£) Same process as CBC encryption, but:

® Start with IV of O
® Return only the last ciphertext block

£) Both these conditions needed for security

o) For fixed-length messages (only), as secure as the
block cipher

HMAC construction

© H(K || M): insecure due to length extension
® Still not recommended: H(M || K), H(K || M || K)

OHMAC. HK @ a || HK® b || M))
£) Standard a = 0x5c*, b = 0x36*
£) Probably the most widely used MAC

Outline

Building a secure channel

Session keys

£) Don't use your long term password, etc., directly as
a key

£ Instead, session key used for just one channel

£ In modern practice, usually obtained with public-key
crypto

£) Separate keys for encryption and MACing

Order of operations

©) Encrypt and MAC ("in parallel”)

® Safe only under extra assumptions on the MAC
©) Encrypt then MAC

® Has cleanest formal safety proof
£) MAC then Encrypt

» Preferred by FS&K for some practical reasons
® Can also be secure

Authenticated encryption modes

©) Encrypting and MACing as separate steps is about
twice as expensive as just encrypting
©) "Authenticated encryption” modes do both at once
® Newer (circa 2000) innovation, many variants
©) NIST-standardized and unpatented: Galois Counter
Mode (GCM)

Ordering and message numbers

©) Also don't want attacker to be able to replay or
reorder messages

©) Simple approach: prefix each message with counter
) Discard duplicate/out-of-order messages

Padding

£) Adjust message size to match multiple of block size

£) To be reversible, must sometimes make message
longer

£ Eq. for 16-byte block, append either 1, or 2 2, or
3 3 3, up to 16 "16" bytes

Padding oracle attack

©) Have to be careful that decoding of padding does
not leak information

) E.g, spend same amount of time MACing and
checking padding whether or not padding is right

©) Remote timing attack against CBC TLS published
2013

Don't actually reinvent the wheel

£) This is all implemented carefully in OpenSSL, SSH,
etc.

£) Good to understand it, but rarely sensible to
reimplement it

£ You'll probably miss at least one of decades’ worth
of attacks

Next time

©) Public-key encryption protocols

£) More about provable security and appropriate
paranoia

