
CSci 5271
Introduction to Computer Security

Day 12: OS security: higher assurance
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

OS trust and assurance

Announcements intermission

Trusted and trustworthy

Part of your system is trusted if its failure can break
your security

Thus, OS is almost always trusted

Real question: is it trustworthy?

Distinction not universally observed: trusted boot,
Trusted Solaris, etc.

Trusted (I/O) path

How do you know you’re talking to the right
software?

And no one is sniffing the data?

Example: Trojan login screen
Or worse: unlock screensaver with root password
Origin of “Press Ctrl-Alt-Del to log in”

Minimizing trust

Kernel ! microkernel ! nanokernel

Reference monitor concept

TCB size: measured relative to a policy goal

Reference monitor � TCB
But hard to build monitor for all goals

How to gain assurance

Use for a long time

Testing

Code / design review

Third-party certification

Formal methods / proof

Evaluation / certification

Testing and review performed by an independent
party

Goal: separate incentives, separate accountability

Compare with financial auditing

Watch out for: form over substance, misplaced
incentives

Orange book OS evaluation

Trusted Computer System Evaluation Criteria

D. Minimal protection
C. Discretionary protection

C2 adds, e.g., secure audit over C1
B. Mandatory protection

B1<B2<B3: stricter classic MLS

A. Verified protection



Common Criteria

International standard and agreement for IT security
certification

Certification against a protection profile, and
evaluation assurance level EAL 1-7

Evaluation performed by non-government labs

Up to EAL 4 automatically cross-recognized

Common Criteria, Anderson’s view

Many profiles don’t specify the right things

OSes evaluated only in unrealistic environments
E.g., unpatched Windows XP with no network attacks

“Corruption, Manipulation, and Inertia”
Pernicious innovation: evaluation paid for by vendor
Labs beholden to national security apparatus

Formal methods and proof

Can math come to the rescue?

Checking design vs. implementation

Automation possible only with other tradeoffs
E.g., bounded size model

Starting to become possible: machine-checked proof

Proof and complexity

Formal proof is only feasible for programs that are
small and elegant

If you honestly care about assurance, you want your
TCB small and elegant anyway

Should provability further guide design?

Some hopeful proof results

seL4 microkernel (SOSP’09 and ongoing)
7.5 kL C, 200 kL proof, 160 bugs fixed, 25 person years

CompCert C-subset compiler (PLDI’06 and ongoing)

RockSalt SFI verifier (PLDI’12)

Outline

OS trust and assurance

Announcements intermission

Note to early readers

This is the section of the slides most likely to change
in the final version

If class has already happened, make sure you have
the latest slides for announcements


