CSci 5271
Introduction to Computer Security
Day 12: OS security: higher assurance

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Micro-architectural side channels

Outline

Announcements intermission

Exercise Set 2 submissions

) We are using different Gradescope features for
Exercise Set 2
£) Create and submit a PDF document with your
answers
m Still prefer typed written answers, for readability
® LaTeX and Google Docs templates available
£) Gradescope submissions now available, include your

group

Exercise Set 1regrading

£) This Wednesday will be the last day to request
re-grades of Exercise Set 1 (via Gradescope)

©) In particular, not entertained at the end of the
semester

Outline

OS trust and assurance

Trusted and trustworthy

©) Part of your system is trusted if its failure can break
your security

£) Thus, OS is almost always trusted
©) Real question: is it trustworthy?

) Distinction not universally observed: trusted boot,
Trusted Solaris, etc.

Trusted (I/0) path

£) How do you know you're talking to the right
software?
£) And no one is sniffing the data?

©) Example: Trojan login screen

® Or worse: unlock screensaver with root password
® Origin of “Press Ctrl-Alt-Del to log in”




Minimizing trust

©) Kernel — microkernel — nanokernel
©) Reference monitor concept
) TCB size: measured relative to a policy goal

©) Reference monitor C TCB
® But hard to build monitor for all goals

How to gain assurance

£) Use for a long time

©) Testing

£) Code / design review
©) Third-party certification
£) Formal methods / proof

Evaluation / certification

) Testing and review performed by an independent
party

£) Goal: separate incentives, separate accountability

©) Compare with financial auditing

£) Watch out for: form over substance, misplaced
incentives

Orange book OS evaluation

£) Trusted Computer System Evaluation Criteria

D. Minimal protection
C. Discretionary protection

® C2 adds, eg., secure audit over Ci
B. Mandatory protection

® Bl<B2<B3: stricter classic MLS

A. Verified protection

Common Criteria

o) International standard and agreement for IT security
certification

) Certification against a protection profile, and
evaluation assurance level EAL 1-7

©) Evaluation performed by non-government labs

©) Up to EAL 4 automatically cross-recognized

Common Criteria, Anderson'’s view

£) Many profiles don't specify the right things

£) OSes evaluated only in unrealistic environments
® Eg, unpatched Windows XP with no network attacks

£ “Corruption, Manipulation, and Inertia”

® Pernicious innovation: evaluation paid for by vendor
® Labs beholden to national security apparatus

Formal methods and proof

©) Can math come to the rescue?
£) Checking design vs. implementation

©) Automation possible only with other tradeoffs
® Eg, bounded size model

©) Starting to become possible: machine-checked proof

Proof and complexity

£) Formal proof is only feasible for programs that are
small and elegant

£ If you honestly care about assurance, you want your
TCB small and elegant anyway

©) Should provability further guide design?




Some hopeful proof results

£) seL4 microkernel (SOSP'09 and ongoing)
® 75 kL C, 200 kL proof, 160 bugs fixed, 25 person years

£) CompCert C-subset compiler (PLDI'O6 and ongoing)
©) RockSalt SFI verifier (PLDI'2)

Outline

More Unix permissions

"POSIX" ACLs

©) Based on a withdrawn standardization
©) More flexible permissions, still fairly Unix-like

©) Multiple user and group entries
® Decision still based on one entry

) Default ACLs: generalize group inheritance
©) Command line: getfacl, setfacl

ACL legacy interactions

£) Hard problem: don't break security of legacy code
® Suggests: “fail closed”
£) Contrary pressure: don't want to break functionality
® Suggests: “fail open”
£) POSIX ACL design: old group permission bits are a
mask on all novel permissions

"POSIX" “capabilities”

) Divide root privilege into smaller (~35) pieces

©) Note: not real capabilities

) First runtime only, then added to FS similar to setuid
©) Motivating example: ping

©) Also allows permanent disabling

Privilege escalation dangers

£) Many pieces of the root privilege are enough to

regain the whole thing
® Access to files as UID O
® CAP_DAC_OVERRIDE
® CAP_FOWNER
® CAP_SYS_MODULE
® CAP_MKNOD
® CAP_PTRACE
® CAP_SYS_ADMIN (mount)

Legacy interaction dangers

©) Former bug: take away capability to drop privileges
) Use of temporary files by no-longer setuid programs
©) For more details: “Exploiting capabilities”, Emeric Nasi




