
CSci 5271
Introduction to Computer Security

Day 12: OS security: higher assurance
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Micro-architectural side channels

Announcements intermission

OS trust and assurance

More Unix permissions

Outline

Micro-architectural side channels

Announcements intermission

OS trust and assurance

More Unix permissions

Exercise Set 2 submissions

We are using different Gradescope features for
Exercise Set 2
Create and submit a PDF document with your
answers

Still prefer typed written answers, for readability
LaTeX and Google Docs templates available

Gradescope submissions now available, include your
group

Exercise Set 1 regrading

This Wednesday will be the last day to request
re-grades of Exercise Set 1 (via Gradescope)

In particular, not entertained at the end of the
semester

Outline

Micro-architectural side channels

Announcements intermission

OS trust and assurance

More Unix permissions

Trusted and trustworthy

Part of your system is trusted if its failure can break
your security

Thus, OS is almost always trusted

Real question: is it trustworthy?

Distinction not universally observed: trusted boot,
Trusted Solaris, etc.

Trusted (I/O) path

How do you know you’re talking to the right
software?

And no one is sniffing the data?

Example: Trojan login screen
Or worse: unlock screensaver with root password
Origin of “Press Ctrl-Alt-Del to log in”



Minimizing trust

Kernel ! microkernel ! nanokernel

Reference monitor concept

TCB size: measured relative to a policy goal

Reference monitor � TCB
But hard to build monitor for all goals

How to gain assurance

Use for a long time

Testing

Code / design review

Third-party certification

Formal methods / proof

Evaluation / certification

Testing and review performed by an independent
party

Goal: separate incentives, separate accountability

Compare with financial auditing

Watch out for: form over substance, misplaced
incentives

Orange book OS evaluation

Trusted Computer System Evaluation Criteria

D. Minimal protection
C. Discretionary protection

C2 adds, e.g., secure audit over C1
B. Mandatory protection

B1<B2<B3: stricter classic MLS

A. Verified protection

Common Criteria

International standard and agreement for IT security
certification

Certification against a protection profile, and
evaluation assurance level EAL 1-7

Evaluation performed by non-government labs

Up to EAL 4 automatically cross-recognized

Common Criteria, Anderson’s view

Many profiles don’t specify the right things

OSes evaluated only in unrealistic environments
E.g., unpatched Windows XP with no network attacks

“Corruption, Manipulation, and Inertia”
Pernicious innovation: evaluation paid for by vendor
Labs beholden to national security apparatus

Formal methods and proof

Can math come to the rescue?

Checking design vs. implementation

Automation possible only with other tradeoffs
E.g., bounded size model

Starting to become possible: machine-checked proof

Proof and complexity

Formal proof is only feasible for programs that are
small and elegant

If you honestly care about assurance, you want your
TCB small and elegant anyway

Should provability further guide design?



Some hopeful proof results

seL4 microkernel (SOSP’09 and ongoing)
7.5 kL C, 200 kL proof, 160 bugs fixed, 25 person years

CompCert C-subset compiler (PLDI’06 and ongoing)

RockSalt SFI verifier (PLDI’12)

Outline

Micro-architectural side channels

Announcements intermission

OS trust and assurance

More Unix permissions

“POSIX” ACLs

Based on a withdrawn standardization

More flexible permissions, still fairly Unix-like

Multiple user and group entries
Decision still based on one entry

Default ACLs: generalize group inheritance

Command line: getfacl, setfacl

ACL legacy interactions

Hard problem: don’t break security of legacy code
Suggests: “fail closed”

Contrary pressure: don’t want to break functionality
Suggests: “fail open”

POSIX ACL design: old group permission bits are a
mask on all novel permissions

“POSIX” “capabilities”

Divide root privilege into smaller (�35) pieces

Note: not real capabilities

First runtime only, then added to FS similar to setuid

Motivating example: ping

Also allows permanent disabling

Privilege escalation dangers

Many pieces of the root privilege are enough to
regain the whole thing

Access to files as UID 0
CAP DAC OVERRIDE

CAP FOWNER

CAP SYS MODULE

CAP MKNOD

CAP PTRACE

CAP SYS ADMIN (mount)

Legacy interaction dangers

Former bug: take away capability to drop privileges

Use of temporary files by no-longer setuid programs

For more details: “Exploiting capabilities”, Emeric Nasi


