CSci 5271
Introduction to Computer Security
Day 8: Defensive programming and design, part 2

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Bernstein’s perspective

Historical background

©) Traditional Unix MTA: Sendmail (BSD)
® Monolithic setuid root program
® Designed for a more trusting era
® In mid-90s, bugs seemed endless
) Spurred development of new, security-oriented
replacements
® Bernstein’s gmail
® Venema et al’s Postfix

Distinctive gmail features

£) Single, security-oriented developer

©) Architecture with separate programs and UIDs
£) Replacements for standard libraries

) Deliveries into directories rather than large files

Ineffective privilege separation

©) Example: prevent Netscape DNS helper from
accessing local file system
©) Before: bug in DNS code
— read user’s private files
©) After: bug in DNS code

— inject bogus DNS results
— man-in-the-middle attack
— read user's private web data

Effective privilege separation

©) Transformations with constrained 1/0

£) General argument: worst adversary can do is control

output
® Which is just the benign functionality

£) MTA header parsing (Sendmail bug)
€) jpegtopnn inside xloadimage

Eliminating bugs

©) Enforce explicit data flow

o) Simplify integer semantics

©) Avoid parsing

) Generalize from errors to inputs

Eliminating code

©) ldentify common functions
£) Automatically handle errors
£) Reuse network tools

£) Reuse access controls

£) Reuse the filesystem

The “gmail security quarantee”

£) $500, later $1000 offered for security bug
©) Never paid out

£) Issues proposed:

® Memory exhaustion DoS
® Overflow of signed integer indexes

) Defensiveness does not encourage more
submissions

gmail today

£) Originally had terms that prohibited modified
redistribution
® Now true public domain

£ Latest release from Bernstein: 1998; netgmail: 2007
©) Does not have large market share
©) All MTAs, even Sendmail, are more secure now

Outline

Announcements intermission

Note to early readers

£) This is the section of the slides most likely to change
in the final version

£ If class has already happened, make sure you have
the latest slides for announcements

Outline

Techniques for privilege separation

Restricted languages

£) Main application: code provided by untrusted parties
£) Packet filters in the kernel

) JavaScript in web browsers
® Also Java, Flash ActionScript, etc.

SFI

£) Software-based Fault Isolation

©) Instruction-level rewriting like (but predates) CFl
©) Limit memory stores and sometimes loads

£) Can't jump out except to designated points

©) Eg., Google Native Client

Separate processes

£) OS (and hardware) isolate one process from another

£) Pay overhead for creation and communication

£) System call interface allows many possibilities for
mischief

System-call interposition

©) Trusted process examines syscalls made by
untrusted

©) Implement via ptrace (like strace, gdb) or via kernel
change

©) Easy policy: deny

Interposition challenges

£) Argument values can change in memory (TOCTTOQU)
£) OS objects can change (TOCTTOU)

£) How to get canonical object identifiers?

©) Interposer must accurately model kernel behavior

) Details: Garfinkel (NDSS'03)

Separate users

©) Reuse OS facilities for access control

©) Unit of trust: program or application

©) Older example: gmail

©) Newer example: Android

) Limitation: lots of things available to any user

chroot

£) Unix system call to change root directory
©) Restrict/virtualize file system access

£) Only available to root

©) Does not isolate other namespaces

0OS-enabled containers

£) One kernel, but virtualizes all namespaces
©) FreeBSD jails, Linux LXC, Solaris zones, etc.
©) Quite robust, but the full, fixed, kernel is in the TCB

(System) virtual machines

£) Presents hardware-like interface to an untrusted
kernel

£) Strong isolation, full administrative complexity

) 1/0 interface looks like a network, etc.

Virtual machine designs

©) (Type 1) hypervisor: ‘superkernel’ underneath VMs

©) Hosted: regular OS underneath VMs

£) Paravirtualizaion: modify kernels in VMs for ease of
virtualization

Virtual machine technologies

) Hardware based: fastest, now common
£) Partial translation: e.g., original VMware

£ Full emulation: e.g. QEMU proper
® Slowest, but can be a different CPU architecture

Modern example: Chrom(ium)

©) Separates “browser kernel” from less-trusted
“rendering engine”
® Pragmatic, keeps high-risk components together
©) Experimented with various Windows and Linux
sandboxing techniques
©) Blocked 70% of historic vulnerabilities, not all new
ones

) http://seclab.stanford.edu/websec/chromium/

Next time

£) Protection and isolation
£) Basic (e.g, classic Unix) access control

