
CSci 5271
Introduction to Computer Security

Day 6: Low-level defenses and counterattacks, part 2
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Return-oriented programming (ROP)

Announcements

BCECHO

Control-flow integrity (CFI)

Additional modern exploit techniques

Pop culture analogy: ransom note trope Basic new idea

Treat the stack like a new instruction set

“Opcodes” are pointers to existing code

Generalizes return-to-libc with more programmability

ret2pop (Müller)

Take advantage of shellcode pointer already present
on stack
Rewrite intervening stack to treat the shellcode
pointer like a return address

A long sequence of chained returns, one pop

ret2pop (Müller)

Gadgets

Basic code unit in ROP

Any existing instruction sequence that ends in a
return

Found by (possibly automated) search

Another partial example

Overlapping x86 instructions

push %esi

mov $0x56,%dh sbb $0xff,%al inc %eax or %al,%dh

movzbl 0x1c(%esi),%edx incl 0x8(%eax) ...

0f b6 56 1c ff 40 08 c6

Variable length instructions can start at any byte

Usually only one intended stream

Where gadgets come from

Possibilities:
Entirely intended instructions
Entirely unaligned bytes
Fall through from unaligned to intended

Standard x86 return is only one byte, 0xc3

Building instructions

String together gadgets into manageable units of
functionality
Examples:

Loads and stores
Arithmetic
Unconditional jumps

Must work around limitations of available gadgets

Hardest case: conditional branch

Existing jCC instructions not useful

But carry flag CF is

Three steps:
1. Do operation that sets CF
2. Transfer CF to general-purpose register
3. Add variable amount to %esp

Further advances in ROP

Can also use other indirect jumps, overlapping not
required

Automation in gadget finding and compilers

In practice: minimal ROP code to allow transfer to
other shellcode

Anti-ROP: lightweight

Check stack sanity in critical functions

Check hardware-maintained log of recent indirect
jumps (kBouncer)

Unfortunately, exploitable gaps

Gaps in lightweight anti-ROP

Hide / flush jump history

Very long loop ! context switch

Long “non-gadget” fragment

(Later: call-preceded gadgets)

Anti-ROP: still research

Modify binary to break gadgets

Fine-grained code randomization

Beware of adaptive attackers (“JIT-ROP”)

Next up: control-flow integrity

Outline

Return-oriented programming (ROP)

Announcements

BCECHO

Control-flow integrity (CFI)

Additional modern exploit techniques

Note to early readers

This is the section of the slides most likely to change
in the final version

If class has already happened, make sure you have
the latest slides for announcements

In particular, the BCMTA vulnerability announcement
is embargoed

Outline

Return-oriented programming (ROP)

Announcements

BCECHO

Control-flow integrity (CFI)

Additional modern exploit techniques

BCECHO code

void print_arg(char *str) {

char buf[20]; int len;

int buf_sz = (sizeof(buf)-sizeof(NULL))

* sizeof(char *);

len = strlcpy(buf, str, buf_sz);

if (len > buf_sz) {

fprintf(stderr,"Trucation occured "

"when printing %s\n", str);

}

fwrite(buf, sizeof(char), len, stdout);

}

Attack planning

Looks like candidate for classic stack-smash

Where to put the attack value?
Via disassembly inspection
Via GDB
Via experimentation

Overwriting the return address

Shellcode concept

fd = open("/etc/passwd",

O_WRONLY|O_APPEND);

write(fd, "pwned\n", 6);

Outline

Return-oriented programming (ROP)

Announcements

BCECHO

Control-flow integrity (CFI)

Additional modern exploit techniques

Some philosophy

Remember allow-list vs. deny-list?

Rather than specific attacks, tighten behavior
Compare: type system; garbage collector vs.
use-after-free

CFI: apply to control-flow attacks

Basic CFI principle

Each indirect jump should only go to a
programmer-intended (or compiler-intended) target

I.e., enforce call graph

Often: identify disjoint target sets

Approximating the call graph

One set: all legal indirect targets

Two sets: indirect calls and return points

n sets: needs possibly-difficult points-to analysis

Target checking: classic

Identifier is a unique 32-bit value

Can embed in effectively-nop instruction

Check value at target before jump

Optionally add shadow stack

Target checking: classic

cmp [ecx], 12345678h

jne error_label

lea ecx, [ecx+4]

jmp ecx

Challenge 1: performance

In CCS’05 paper: 16% avg., 45% max.
Widely varying by program
Probably too much for on-by-default

Improved in later research
Common alternative: use tables of legal targets

Challenge 2: compatibility

Compilation information required

Must transform entire program together

Can’t inter-operate with untransformed code

How to support COTS binaries

“Commercial off-the-shelf” binaries

CCFIR (Berkeley+PKU, Oakland’13)
Use Windows ASLR info. to find targets

CFI for COTS Binaries (Stony Brook, USENIX’13)
Keep copy of original code, build translation table

Control-Flow Guard

CFI-style defense now available in Windows

Compiler generates tables of legal targets

At runtime, table managed by kernel, read-only to
user-space

Coarse-grained counter-attack

“Out of Control” paper, Oakland’14

Limit to gadgets allowed by coarse policy
Indirect call to function entry
Return to point after call site (“call-preceded”)

Use existing direct calls to VirtualProtect

Also used against kBouncer

Control-flow bending counter-attack

Control-flow attacks that still respect the CFG

Especially easy without a shadow stack

Printf-oriented programming generalizes
format-string attacks

Outline

Return-oriented programming (ROP)

Announcements

BCECHO

Control-flow integrity (CFI)

Additional modern exploit techniques

Target #1: web browsers

Widely used on desktop and mobile platforms

Easily exposed to malicious code

JavaScript is useful for constructing fancy attacks

Heap spraying

How to take advantage of uncontrolled jump?

Maximize proportion of memory that is a target

Generalize NOP sled idea, using benign allocator

Under W�X, can’t be code directly

JIT spraying

Can we use a JIT compiler to make our sleds?

Exploit unaligned execution:
Benign but weird high-level code (bitwise ops. with
constants)
Benign but predictable JITted code
Becomes sled + exploit when entered unaligned

JIT spray example

25 90 90 90 3c and $0x3c909090,%eax

25 90 90 90 3c and $0x3c909090,%eax

25 90 90 90 3c and $0x3c909090,%eax

25 90 90 90 3c and $0x3c909090,%eax

JIT spray example

90 nop

90 nop

90 nop

3c 25 cmp $0x25,%al

90 nop

90 nop

90 nop

3c 25 cmp $0x25,%al

Use-after-free

Low-level memory error of choice in web browsers

Not as easily audited as buffer overflows

Can lurk in attacker-controlled corner cases

JavaScript and Document Object Model (DOM)

Sandboxes and escape

Chrome NaCl: run untrusted native code with SFI
Extra instruction-level checks somewhat like CFI

Each web page rendered in own, less-trusted
process
But not easy to make sandboxes secure

While allowing functionality

Chained bugs in Pwnium 1

Google-run contest for complete Chrome exploits
First edition in spring 2012

Winner 1: 6 vulnerabilities

Winner 2: 14 bugs and “missed hardening
opportunities”

Each got $60k, bugs promptly fixed

Next time

Defensive design and programming

Make your code less vulnerable the first time

