CSci 5271
Introduction to Computer Security
Day 6: Low-level defenses and counterattacks, part 2

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Return-oriented programming (ROP)

Pop culture analogy: ransom note trope

|come] fat midnight), [bring |

Basic new idea

) Treat the stack like a new instruction set
£) "Opcodes” are pointers to existing code

£) Generalizes return-to-libc with more programmability

ret2pop (Miller)

) Take advantage of shellcode pointer already present
on stack
©) Rewrite intervening stack to treat the shellcode

pointer like a return address
® A long sequence of chained returns, one pop

ret2pop (Miiller)

9 1 shellcode

Gadgets

©) Basic code unit in ROP

©) Any existing instruction sequence that ends in a
return

©) Found by (possibly automated) search

Another partial example

— int 0x80; ret

L

—=mov %ecx, %eax; ret
(syscall 125 = mprotect)
—=pop %ecx; ret

|

-
g
il

Overlapping x86 instructions

push %$esi

[mov $0x56, 3dh|[sbb $0x£f, %alllinc %eax|or %al,%dh]

‘movzbl Oxlc(%esi),%edx“ incl 0x8 (%eax) ‘ s
0f b6 56 lc ff 40 08 c6é

) Variable length instructions can start at any byte
©) Usually only one intended stream

Where gadgets come from

) Possibilities:
® Entirely intended instructions

® Entirely unaligned bytes
® Fall through from unaligned to intended

£) Standard x86 return is only one byte, Oxc3

Building instructions

) String together gadgets into manageable units of
functionality
©) Examples:

® Loads and stores
® Arithmetic
® Unconditional jumps

©) Must work around limitations of available gadgets

Hardest case: conditional branch

£ Existing jCC instructions not useful
£) But carry flag CF is

£) Three steps:

1. Do operation that sets CF
2. Transfer CF to general-purpose register
3. Add variable amount to %esp

Further advances in ROP

£) Can also use other indirect jumps, overlapping not
required

©) Automation in gadget finding and compilers

©) In practice: minimal ROP code to allow transfer to
other shellcode

Anti-ROP: lightweight

£) Check stack sanity in critical functions

£) Check hardware-maintained log of recent indirect
jumps (kBouncer)

£) Unfortunately, exploitable gaps

Gaps in lightweight anti-ROP

©) Hide / flush jump history

©) Very long loop — context switch
©) Long "non-gadget” fragment

©) (Later: call-preceded gadgets)

Anti-ROP: still research

£) Modify binary to break gadgets

£) Fine-grained code randomization

£) Beware of adaptive attackers (“JIT-ROP”)
£) Next up: control-flow integrity

Outline

Announcements

Note to early readers

£) This is the section of the slides most likely to change
in the final version

£ If class has already happened, make sure you have
the latest slides for announcements

£ In particular, the BCMTA vulnerability announcement
is embargoed

Outline

BCECHO

BCECHO code

void print_arg(char *str) {
char buf[20]; int len;
int buf_sz = (sizeof (buf)-sizeof (NULL))
* sizeof(char *);
len = strlcpy(buf, str, buf_sz);
if (len > buf_sz) {
fprintf (stderr, "Trucation occured "
"when printing %s\n", str);

}

furite(buf, sizeof(char), len, stdout);

}

Attack planning

©) Looks like candidate for classic stack-smash

©) Where to put the attack value?

® Via disassembly inspection
® Via GDB
® Via experimentation

Overwriting the return address

12(%ebp)

1 |8(%ebp)
%) 4 (%ebp)

PPl sebp

-4(%ebp)

-8(%ebp)

lo
“top" of har(8]
stack

sesp 10]_|-16(%ebp)

Shellcode concept

fd = open("/etc/passwd",
O_WRONLY | 0_APPEND) ;
write(fd, "pwned\n", 6);

Outline

Control-flow integrity (CFlI)

Some philosophy

©) Remember allow-list vs. deny-list?

©) Rather than specific attacks, tighten behavior
® Compare: type system; garbage collector vs.
use-after-free

) CFI: apply to control-flow attacks

Basic CFl principle

£) Each indirect jump should only go to a
programmer-intended (or compiler-intended) target

0 le, enforce call graph
£) Often: identify disjoint target sets

Approximating the call graph

©) One set: all legal indirect targets
©) Two sets: indirect calls and return points
©) n sets: needs possibly-difficult points-to analysis

Target checking: classic

©) Identifier is a unique 32-bit value

£) Can embed in effectively-nop instruction
£) Check value at target before jump

) Optionally add shadow stack

Target checking: classic

cmp [ecx], 12345678h
jne error_label

lea ecx, [ecx+4]

jmp ecx

Challenge 1. performance

£) In CCS'05 paper: 16% avg., 45% max.
® Widely varying by program
® Probably too much for on-by-default
£) Improved in later research
= Common alternative: use tables of legal targets

Challenge 2: compatibility

) Compilation information required
©) Must transform entire program together
©) Can't inter-operate with untransformed code

How to support COTS binaries

£) "Commercial off-the-shelf” binaries

£) CCFIR (Berkeley+PKU, Oakland'13)
® Use Windows ASLR info. to find targets

£) CFl for COTS Binaries (Stony Brook, USENIX'13)
® Keep copy of original code, build translation table

Control-Flow Guard

£) CFl-style defense now available in Windows
©) Compiler generates tables of legal targets

£) At runtime, table managed by kernel, read-only to
user-space

Coarse-grained counter-attack

£) "Out of Control” paper, Oakland'14

©) Limit to gadgets allowed by coarse policy

® Indirect call to function entry
® Return to point after call site (“call-preceded”)

£) Use existing direct calls to VirtualProtect
£) Also used against kBouncer

Control-flow bending counter-attack

©) Control-flow attacks that still respect the CFG
©) Especially easy without a shadow stack

©) Printf-oriented programming generalizes
format-string attacks

Outline

Additional modern exploit techniques

Target #1. web browsers

£) Widely used on desktop and mobile platforms
) Easily exposed to malicious code
£) JavaScript is useful for constructing fancy attacks

Heap spraying

£) How to take advantage of uncontrolled jump?

£) Maximize proportion of memory that is a target
£) Generalize NOP sled idea, using benign allocator
£) Under Wa X, can't be code directly

JIT spraying

£) Can we use a JIT compiler to make our sleds?

©) Exploit unaligned execution:

® Benign but weird high-level code (bitwise ops. with
constants)

® Benign but predictable JITted code

® Becomes sled + exploit when entered unaligned

JIT spray example

25 90 90 90 3c and $0x3c909090, %eax
25 90 90 90 3c and $0x3c909090, eax
25 90 90 90 3c and $0x3c909090, j%eax
25 90 90 90 3c and $0x3c909090, %eax

JIT spray example

90 nop
90 nop
90 nop
3c 25 cmp $0x25,%al
90 nop
90 nop
90 nop
3c 25 cmp $0x25,%al

Use-after-free

£) Low-level memory error of choice in web browsers
£) Not as easily audited as buffer overflows

£) Can lurk in attacker-controlled corner cases

£) JavaScript and Document Object Model (DOM)

Sandboxes and escape

©) Chrome NaCl: run untrusted native code with SFI
® Extra instruction-level checks somewhat like CFI
©) Each web page rendered in own, less-trusted
process
£) But not easy to make sandboxes secure
® While allowing functionality

Chained bugs in Pwnium 1

£) Google-run contest for complete Chrome exploits
® First edition in spring 2012

£) Winner 1. 6 vulnerabilities

£) Winner 2: 14 bugs and "missed hardening
opportunities”

£) Each got $60k, bugs promptly fixed

Next time

©) Defensive design and programming
£) Make your code less vulnerable the first time

