CSci 5271
Introduction to Computer Security
Day 7: Defensive programming and design, part 1

Stephen McCamant
University of Minnesota, Computer Science & Engineering

ROP defense question

Which of these defense techniques would completely
prevent a ROP attack from returning from an intended
return instruction to an unintended gadget?

A. ASLR

B. A non-executable stack

C. Adjacent stack canaries

D. A shadow stack

E. A and C, but only if used together

Outline
Control-flow integrity (CFl), contd

Coarse-grained counter-attack

£) "Out of Control” paper, Oakland'14

£ Limit to gadgets allowed by coarse policy

® Indirect call to function entry
® Return to point after call site (“call-preceded”)

£) Use existing direct calls to VirtualProtect
£) Also used against kBouncer

Control-flow bending counter-attack

©) Control-flow attacks that still respect the CFG
©) Especially easy without a shadow stack

) Printf-oriented programming generalizes
format-string attacks

Outline

Additional modern exploit techniques

Target #1. web browsers

©) Widely used on desktop and mobile platforms
) Easily exposed to malicious code
©) JavaScript is useful for constructing fancy attacks

Heap spraying

£) How to take advantage of uncontrolled jump?

£) Maximize proportion of memory that is a target
£) Generalize NOP sled idea, using benign allocator
£) Under WeX, can't be code directly

JIT spraying

©) Can we use a JIT compiler to make our sleds?

) Exploit unaligned execution:
® Benign but weird high-level code (bitwise ops. with
constants)
® Benign but predictable JITted code
® Becomes sled + exploit when entered unaligned

JIT spray example

25 90 90 90 3c and $0x3c909090, eax
25 90 90 90 3c and $0x3c909090,%eax
25 90 90 90 3c and $0x3c909090,%eax
25 90 90 90 3c and $0x3c909090,%eax

JIT spray example

90 nop
90 nop
90 nop
3c 25 cmp $0x25,%al
90 nop
90 nop
90 nop
3c 25 cmp $0x25,%al

Use-after-free

£) Low-level memory error of choice in web browsers
£) Not as easily audited as buffer overflows

£) Can lurk in attacker-controlled corner cases

£) JavaScript and Document Object Model (DOM)

Sandboxes and escape

©) Chrome NaCl: run untrusted native code with SFI
® Extra instruction-level checks somewhat like CFI
©) Each web page rendered in own, less-trusted
process
©) But not easy to make sandboxes secure
® While allowing functionality

Chained bugs in Pwnium 1

£) Google-run contest for complete Chrome exploits
® First edition in spring 2012

) Winner 1. 6 vulnerabilities

£) Winner 2: 14 bugs and “missed hardening
opportunities”

£) Each got $60Kk, bugs promptly fixed

Outline

Saltzer & Schroeder’s principles

Economy of mechanism

£) Security mechanisms should be as simple as
possible

£) Good for all software, but security software needs
special scrutiny

Fail-safe defaults

©) When in doubt, don't give permission

©) Allow-list (whitelist), don't deny-list (blacklist)
) Obvious reason: if you must fail, fail safe

) More subtle reason: incentives

Complete mediation

£) Every mode of access must be checked

® Not just regular accesses: startup, maintenance, etc.
£) Checks cannot be bypassed

® Eg, web app must validate on server, not just client

Open design

£) Security must not depend on the design being
secret
6 If anything is secret, a minimal key
® Design is hard to keep secret anyway

® Key must be easily changeable if revealed
® Design cannot be easily changed

Open design: strong version

£) "The design should not be secret”

£ If the design is fixed, keeping it secret can't help
attackers

£) But an unscrutinized design is less likely to be
secure

Separation of privilege

©) Real world: two-person principle
) Direct implementation: separation of duty

£) Multiple mechanisms can help if they are both
required
® Password and wheel group in Unix

Least privilege

©) Programs and users should have the most limited
set of powers needed to do their job
£) Presupposes that privileges are suitably divisible
® Contrast: Unix root

Least privilege: privilege separation

) Programs must also be divisible to avoid excess
privilege

) Classic example: multi-process OpenSSH server

©) NB. Separation of privilege # privilege separation

Least common mechanism

£) Minimize the code that all users must depend on for
security

£) Related term: minimize the Trusted Computing Base
(TCB)

©) Eq. prefer library to system call; microkernel OS

Psychological acceptability

©) A system must be easy to use, if users are to apply
it correctly

©) Make the system's model similar to the user’s
mental model to minimize mistakes

Sometimes: work factor

) Cost of circumvention should match attacker and
resource protected

©) Eqg. length of password
£) But, many attacks are easy when you know the bug

Sometimes: compromise recording

©) Recording a security failure can be almost as good
as preventing it
©) But, few things in software can't be erased by root

Outline

Announcements, BCECHO

| haven't forgotten about

©) Hands-on assignment 1

® Will release BCEMACS and the VMs as soon as they are
ready

) Project meetings
® Will likely be mostly next week, watch for invitation

Alternative Saltzer & Schroeder

£) Not a replacement for reading the real thing, but:
O http://emergentchaos. com/the-security-principles-of-saltzer-and-schroeder

£) Security Principles of Saltzer and Schroeder,
illustrated with scenes from Star Wars (Adam
Shostack)

BCECHO today

£) More ways to understand the stack layout
® In GDB, or by reading disassembly
©) Understanding some weird behaviors

® No crash on 32-byte input
® Infinite loop on 40-byte input
® Memory dump on 56-byte input

print arg stack layout

Return address

Saved %rbp

Saved %rbx

8 unused bytes

8 unused bytes

buf[16 .. 19], 4 unused bytes
buf[8 .. 15]

buf[0 .. 7]

Outline

More secure design principles

Pop quiz

©) What's the type of the return value of getchar?
) Why?

Separate the control plane

©) Keep metadata and code separate from untrusted
data

£) Bad: format string vulnerability
£) Bad: old telephone systems

Defense in depth

£) Multiple levels of protection can be better than one
) Especially if none is perfect
©) But, many weak security mechanisms don't add up

Canonicalize names

©) Use unique representations of objects
©) Eqg. in paths, remove ., .., extra slashes, symlinks
©) Eg, use IP address instead of DNS name

Fail-safe / fail-stop

£ If something goes wrong, behave in a way that's safe

£) Often better to stop execution than continue in
corrupted state

£ Eg, better segfault than code injection

Outline

Software engineering for security

Modularity

©) Divide software into pieces with well-defined
functionality
£) Isolate security-critical code

® Minimize TCB, facilitate privilege separation
® Improve auditability

Minimize interfaces

o) Hallmark of good modularity: clean interface

©) Particularly difficult:

® Safely implementing an interface for malicious users
® Safely using an interface with a malicious implementation

Appropriate paranoia

£) Many security problems come down to missing
checks

£) But, it isn't possible to check everything continuously

£) How do you know when to check what?

Invariant

©) A fact about the state of a program that should
always be maintained

©) Assumed in one place to guarantee in another

) Compare: proof by induction

Pre- and postconditions

£) Invariants before and after execution of a function
) Precondition: should be true before call
) Postcondition: should be true after return

Dividing responsibility

©) Program must ensure nothing unsafe happens

©) Pre- and postconditions help divide that
responsibility without gaps

When to check

£) At least once before any unsafe operation
£ If the check is fast
£ If you know what to do when the check fails

o) If you don't trust
® your caller to obey a precondition
® your callee to satisfy a postcondition
® yourself to maintain an invariant

Sometimes you can't check

©) Check that p points to a null-terminated string
©) Check that fp is a valid function pointer
©) Check that x was not chosen by an attacker

Error handling

) Every error must be handled
® |e, program must take an appropriate response action
£ Errors can indicate bugs, precondition violations, or
situations in the environment

Error codes

£) Commonly, return value indicates error if any
£) Bad: may overlap with reqular result
©) Bad: goes away if ignored

Exceptions

£) Separate from data, triggers jump to handler

£) Good: avoid need for manual copying, not dropped
£) May support: automatic cleanup (finally)

£) Bad: non-local control flow can be surprising

Testing and security

) “Testing shows the presence, not the absence of
bugs” - Dijkstra
£) Easy versions of some bugs can be found by
targeted tests:
® Buffer overflows: long strings

® Integer overflows: large numbers
® Format string vulnerabilities: %x

Fuzz testing

£) Random testing can also sometimes reveal bugs
©) Original ‘fuzz’ (Miller): program </dev/urandom
£) Even this was surprisingly effective

Modern fuzz testing

©) Mutation fuzzing: small random changes to a benign
seed input

® Complex benign inputs help cover interesting functionality

£) Grammar-based fuzzing: randomly select valid inputs

©) Coverage-driven fuzzing: build off of tests that cause
new parts of the program to execute

® Automatically learns what inputs are “interesting”
® Pioneered in the open-source AFL tool

Outline

Secure use of the OS

Avoid special privileges

©) Require users to have appropriate permissions
® Rather than putting trust in programs

©) Anti-pattern 1. setuid/setgid program
©) Anti-pattern 2: privileged daemon
£) But, sometimes unavoidable (e.g., email)

One slide on setuid/setgid

£) Unix users and process have a user id number (UID)
as well as one or more group IDs

©) Normally, process has the IDs of the use who starts
it

©) A setuid program instead takes the UID of the
program binary

Don't use shells or Tcl

£) ...in security-sensitive applications

) String interpretation and re-parsing are very hard to
do safely

©) Eternal Unix code bug: path names with spaces

Prefer file descriptors

£) Maintain references to files by keeping them open
and using file descriptors, rather than by name

£) References same contents despite file system
changes

£) Use openat, etc, variants to use FD instead of
directory paths

Prefer absolute paths

£) Use full paths (starting with /) for programs and files
©) $PATH under local user control

©) Initial working directory under local user control
® But FD-like, so can be used in place of openat if missing

Prefer fully trusted paths

£) Each directory component in a path must be write
protected

£) Read-only file in read-only directory can be changed
if a parent directory is modified

Don't separate check from use

©) Avoid pattern of eg, access then open
©) Instead, just handle failure of open
® You have to do this anyway

©) Multiple references allow races
® And access also has a history of bugs

Be careful with temporary files

©) Create files exclusively with tight permissions and
never reopen them
® See detailed recommendations in Wheeler
£) Not quite good enough: reopen and check matching
device and inode
® Fails with sufficiently patient attack

Give up privileges

) Using appropriate combinations of set*id functions
® Alas, details differ between Unix variants

£) Best: give up permanently
£) Second best: give up temporarily

) Detailed recommendations: Setuid Demystified
(USENIX'02)

Allow-list environment variables

£) Can change the behavior of called program in
unexpected ways
£) Decide which ones are necessary
® As few as possible

£) Save these, remove any others

Next time

£) Recommendations from the author of gqmail
©) A variety of isolation mechanisms

