CSci 5271
Introduction to Computer Security
Day 6: Low-level defenses and counterattacks, part 2

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline
WaX (DEP)

Basic idea

©) Traditional shellcode must go in a memory area that
is

® writable, so the shellcode can be inserted
® executable, so the shellcode can be executed

©) But benign code usually does not need this
combination
o W xor X, really —(W A X)

Non-writable code, X — —W

£ Eqg, read-only text section
£) Has been standard for a while, especially on Unix

£ Lets OS efficiently share code with multiple program
instances

Non-executable data, W — —X

) Prohibit execution of static data, stack, heap

©) Not a problem for most programs
® Incompatible with some GCC features no one uses
® Non-executable stack opt-in on Linux, but now
near-universal

Implementing W & X

£) Page protection implemented by CPU
® Some architectures (e.g. SPARC) long supported W ¢ X
£) x86 historically did not

® One bit controls both read and execute
® Partial stop-gap “code segment limit”

) Eventual obvious solution: add new bit
® NX (AMD), XD (Intel), XN (ARM)

One important exception

©) Remaining important use of self-modifying code:
just-in-time (JIT) compilers
® Eg, all modern JavaScript engines
©) Allow code to re-enable execution per-block

® mprotect, VirtualProtect
® Now a favorite target of attackers

Counterattack: code reuse

£) Attacker can't execute new code

£) So, take advantage of instructions already in binary
£) There are usually a lot of them

£) And no need to obey original structure

Classic return-to-libc (1997)

©) Overwrite stack with copies of:

® Pointer to libc’s system function
® Pointer to "/bin/sh" string (also in libc)

©) The system function is especially convenient
o) Distinctive feature: return to entry point

Chained return-to-libc

£) Shellcode often wants a sequence of actions, e.g.
® Restore privileges
® Allow execution of memory area
® Overwrite system file, etc.
£) Can put multiple fake frames on the stack
® Basic idea present in 1997, further refinements

Beyond return-to-libc

£) Can we do more? Oh, yes.

) Classic academic approach: what's the most we
could ask for?

©) Here: “Turing completeness”
£) How to do it: reading for today

Outline

Return-oriented programming (ROP)

Pop culture analogy: ransom note trope

|come | [at midnight]. bring |

Basic new idea

©) Treat the stack like a new instruction set
£) "Opcodes” are pointers to existing code
£) Generalizes return-to-libc with more programmability

ret2pop (Miiller)

©) Take advantage of shellcode pointer already present
on stack
©) Rewrite intervening stack to treat the shellcode
pointer like a return address
® A long sequence of chained returns, one pop

ret2pop (Miiller)

9 shellcode

ddress|— POP %ecx; ret

e

— ret

Gadgets

©) Basic code unit in ROP

©) Any existing instruction sequence that ends in a
return

) Found by (possibly automated) search

Another partial example

—int 0x80; ret

L

—=mov %ecx, %eax; ret
(syscall 125 = mprotect)
—=pop %ecx; ret

5
&

|

Overlapping x86 instructions

[mov_$0x56, $dh|[sbb $0x£f, $alllinc %eax|or %al, dh]

‘movzbl Ox1lc (%esi), $edx H incl 0x8 (%eax) ‘ .
0f b6 56 lc ff 40 08 c6

) Variable length instructions can start at any byte
) Usually only one intended stream

Where gadgets come from

£) Possibilities:
® Entirely intended instructions
® Entirely unaligned bytes
® Fall through from unaligned to intended

£) Standard x86 return is only one byte, Oxc3

Building instructions

©) String together gadgets into manageable units of
functionality
©) Examples:

® Loads and stores
® Arithmetic
® Unconditional jumps

©) Must work around limitations of available gadgets

Hardest case: conditional branch

£ Existing jCC instructions not useful
£) But carry flag CF is

£) Three steps:

1. Do operation that sets CF
2. Transfer CF to general-purpose register
3. Add variable amount to %esp

Further advances in ROP

©) Can also use other indirect jumps, overlapping not
required
©) Automation in gadget finding and compilers

0 In practice: minimal ROP code to allow transfer to
other shellcode

Anti-ROP: lightweight

£) Check stack sanity in critical functions

£) Check hardware-maintained log of recent indirect
jumps (kBouncer)

©) Unfortunately, exploitable gaps

Gaps in lightweight anti-ROP

©) Hide / flush jump history

©) Very long loop — context switch
©) Long “"non-gadget” fragment

©) (Later: call-preceded gadgets)

Anti-ROP: still research

£) Modify binary to break gadgets

©) Fine-grained code randomization

£) Beware of adaptive attackers (“JIT-ROP")
£) Next up: control-flow integrity

Outline

Announcements

Exercise set 1

£) Due Wednesday 1:59pm

£) We've had some good discussion on Piazza, also
check there if you run into questions

£) One member of each group submits plain text via
Gradescope online form

Outline

BCECHO

BCECHO code

void print_arg(char *str) {
char buf[20]; int len;
int buf_sz = (sizeof (buf)-sizeof (NULL))
* sizeof (char *);
len = strlcpy(buf, str, buf_sz);
if (len > buf_sz) {
fprintf (stderr, "Trucation occured "
"when printing %s\n", str);

}

furite(buf, sizeof(char), len, stdout);

Attack planning

©) Looks like candidate for classic stack-smash

©) Where to put the attack value?

® Via disassembly inspection
® Via GDB
® Via experimentation

Overwriting the return address

L™ 112 (%ebp)

8(%ebp)

S|4 (%ebp)

Pl sebp

-8(%ebp)

loc
“top" of har(8]
stack

%esp. 01 |-16(%ebp)

Outline

Control-flow integrity (CFI)

Some philosophy

£) Remember allow-list vs. deny-list?

£) Rather than specific attacks, tighten behavior
= Compare: type system; garbage collector vs.
use-after-free

) CFI: apply to control-flow attacks

Basic CFI principle

£) Each indirect jump should only go to a
programmer-intended (or compiler-intended) target

o) le, enforce call graph
£) Often: identify disjoint target sets

Approximating the call graph

£) One set: all legal indirect targets
£) Two sets: indirect calls and return points
) n sets: needs possibly-difficult points-to analysis

Target checking: classic

©) Identifier is a unique 32-bit value

£) Can embed in effectively-nop instruction
©) Check value at target before jump

) Optionally add shadow stack

Target checking: classic

cmp [ecx], 12345678h
jne error_label

lea ecx, [ecx+4]

jmp ecx

Challenge 1. performance

©) In CCS'05 paper: 16% avg., 45% max.
® Widely varying by program
® Probably too much for on-by-default
©) Improved in later research
® Common alternative: use tables of legal targets

Challenge 2: compatibility

£) Compilation information required
£) Must transform entire program together
£) Can't inter-operate with untransformed code

How to support COTS binaries

£) "Commercial off-the-shelf” binaries

£) CCFIR (Berkeley+PKU, Oakland13)
® Use Windows ASLR info. to find targets

) CFl for COTS Binaries (Stony Brook, USENIX'13)
® Keep copy of original code, build translation table

Control-Flow Guard

£) CFl-style defense now available in Windows

£) Compiler generates tables of legal targets

£) At runtime, table managed by kernel, read-only to
user-space

Coarse-grained counter-attack

£) "Out of Control” paper, Oakland'14

©) Limit to gadgets allowed by coarse policy

® Indirect call to function entry
® Return to point after call site (“call-preceded”)

£) Use existing direct calls to VirtualProtect
©) Also used against kBouncer

Control-flow bending counter-attack

£) Control-flow attacks that still respect the CFG
£) Especially easy without a shadow stack

) Printf-oriented programming generalizes
format-string attacks

Outline

Additional modern exploit techniques

Target #1. web browsers

£) Widely used on desktop and mobile platforms
£) Easily exposed to malicious code
£) JavaScript is useful for constructing fancy attacks

Heap spraying

©) How to take advantage of uncontrolled jump?

£) Maximize proportion of memory that is a target
) Generalize NOP sled idea, using benign allocator
©) Under WX, can't be code directly

JIT spraying

£) Can we use a JIT compiler to make our sleds?

) Exploit unaligned execution:
® Benign but weird high-level code (bitwise ops. with
constants)
® Benign but predictable JITted code
® Becomes sled + exploit when entered unaligned

JIT spray example

25 90 90 90 3c
25 90 90 90 3c
25 90 90 90 3c
25 90 90 90 3c

and $0x3¢909090, jeax
and $0x3c909090, jeax
and $0x3¢c909090, %eax
and $0x3¢909090, jeax

JIT spray example

90 nop
90 nop
90 nop
3c 25 cmp $0x25,%al
90 nop
90 nop
90 nop
3c 25 cmp $0x25,%al

Use-after-free

©) Low-level memory error of choice in web browsers
£) Not as easily audited as buffer overflows

£) Can lurk in attacker-controlled corner cases

£) JavaScript and Document Object Model (DOM)

Sandboxes and escape

£) Chrome NaCl: run untrusted native code with SFI
® Extra instruction-level checks somewhat like CFI
£) Each web page rendered in own, less-trusted
process
£) But not easy to make sandboxes secure
® While allowing functionality

Chained bugs in Pwnium 1

£) Google-run contest for complete Chrome exploits
® First edition in spring 2012

£) Winner 1. 6 vulnerabilities

©) Winner 2: 14 bugs and "missed hardening
opportunities”

) Each got $60k, bugs promptly fixed

Next time

) Defensive design and programming
£) Make your code less vulnerable the first time

