
CSci 5271
Introduction to Computer Security

Day 4: Low-level attacks
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Classic code injection attacks

Announcements intermission

Shellcode techniques

Exploiting other vulnerabilities

Overwriting the return address Collateral damage

Collateral damage

Stop the program from crashing early

‘Overwrite’ with same value, or another legal one

Minimize time between overwrite and use

Other code injection targets

Function pointers
Local, global, on heap

longjmp buffers

GOT (PLT) / import tables

Exception handlers

Indirect overwrites

Change a data pointer used to access a code
pointer

Easiest if there are few other uses

Common examples
Frame pointer
C++ object vtable pointer

Non-sequential writes

E.g. missing bounds check, corrupted pointer

Can be more flexible and targeted
E.g., a write-what-where primitve

More likely needs an absolute location

May have less control of value written



Unexpected-size writes

Attacks don’t need to obey normal conventions

Overwrite one byte within a pointer

Use mis-aligned word writes to isolate a byte

Outline

Classic code injection attacks

Announcements intermission

Shellcode techniques

Exploiting other vulnerabilities

Note to early readers

This is the section of the slides most likely to change
in the final version

If class has already happened, make sure you have
the latest slides for announcements

Outline

Classic code injection attacks

Announcements intermission

Shellcode techniques

Exploiting other vulnerabilities

Basic definition

Shellcode: attacker supplied instructions
implementing malicious functionality

Name comes from example of starting a shell

Often requires attention to machine-language
encoding

Classic execve /bin/sh

execve(fname, argv, envp) system call

Specialized syscall calling conventions

Omit unneeded arguments

Doable in under 25 bytes for Linux/x86

Avoiding zero bytes

Common requirement for shellcode in C string

Analogy: broken 0 key on keyboard

May occur in other parts of encoding as well

More restrictions

No newlines

Only printable characters

Only alphanumeric characters

“English Shellcode” (CCS’09)



Transformations

Fold case, escapes, Latin1 to Unicode, etc.

Invariant: unchanged by transformation

Pre-image: becomes shellcode only after
transformation

Multi-stage approach

Initially executable portion unpacks rest from
another format

Improves efficiency in restricted environments

But self-modifying code has pitfalls

NOP sleds

Goal: make the shellcode an easier target to hit

Long sequence of no-op instructions, real shellcode
at the end

x86: 0x90 0x90 0x90 0x90 0x90 . . . shellcode

Where to put shellcode?

In overflowed buffer, if big enough

Anywhere else you can get it
Nice to have: predictable location

Convenient choice of Unix local exploits:

Where to put shellcode?

Environment variables

Code reuse

If can’t get your own shellcode, use existing code

Classic example: system implementation in C library
“Return to libc” attack

More variations on this later

Outline

Classic code injection attacks

Announcements intermission

Shellcode techniques

Exploiting other vulnerabilities

Non-control data overwrite

Overwrite other security-sensitive data

No change to program control flow

Set user ID to 0, set permissions to all, etc.



Heap meta-data

Boundary tags similar to doubly-linked list

Overwritten on heap overflow

Arbitrary write triggered on free

Simple version stopped by sanity checks

Heap meta-data

Use after free

Write to new object overwrites old, or vice-versa

Key issue is what heap object is reused for

Influence by controlling other heap operations

Integer overflows

Easiest to use: overflow in small (8-, 16-bit) value, or
only overflowed value used
2GB write in 100 byte buffer

Find some other way to make it stop

Arbitrary single overwrite
Use math to figure out overflowing value

Null pointer dereference

Add offset to make a predictable pointer
On Windows, interesting address start low

Allocate data on the zero page
Most common in user-space to kernel attacks
Read more dangerous than a write

Format string attack

Attacker-controlled format: little interpreter

Step one: add extra integer specifiers, dump stack
Already useful for information disclosure

Format string attack layout Format string attack layout



Format string attack: overwrite

%n specifier: store number of chars written so far to
pointer arg

Advance format arg pointer to other
attacker-controlled data

Control number of chars written with padding

On x86, use unaligned stores to create pointer

Next time

Defenses and counter-attacks


