CSci 5271
Introduction to Computer Security
Day 3: Low-level vulnerabilities

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Preview question

In a 32-bit Linux/x86 program, which of these objects
would have the lowest address (numerically least when
considered as unsigned)?

A. An environment variable

B. The program name in argv [0]

C. A command-line argument in argv[1]

D. A local f1loat variable in a function called by main

E. A local char array in main

Outline

Low-level view of memory

Note on x86-32 and x86-64

£) 32-bit and 64-bit x86 have many similarities, but

some differences
£) 64-bit now more common for big systems
® 32-bit architectures still common in embedded systems,
eg. 32-bit ARM
£) This year's HA1 will still have a 32-bit vulnerable
binary
® Makes some attacks easier
® Less translation for classic vulnerability and attack
descriptions

Overall layout (Linux 32-bit)

Kernel
use only

Main

stack

Qmw%om

Shared fibrary 2
Shared fibrary 1

mditean

Static code + data

Oxffffffff

0xc0000000

0x40000000

0x08048000

Usually unused

|«— owerene aoe s — |

Detail: static code and data

gr,OWSTup
Mainlheap
— rw-
.bss (zero initialized)
.data (initialized)
on disk: .rodata (constants) r-x
.text (code)
Usually unused Ox08048000

Detail: heap

future|growth
the

] Unallocated

‘ area

Medium objects

[
[
[
[
P

Free |]

| w/ boundary tags

Small objects

1]
[TT]| bucketed by size

Detail: initial stack

future|growth

OXbFFFFFFF

Environment/
AUXV strings

5] | |argv strings

auxv
environment
argv

Example stack frame

12(%ebp)

8(%ebp)

=% 4 (%ebp)

L %ebp

%esl |4 (sebp)
[

-8(%ebp)

o
“top* of char(8]
stack

%esp. 01 |-16(%ebp)

Outline

Logistics announcements

Outline

Basic memory-safety problems

Stack frame overflow

L* 112(sebp)

8(%ebp)

=4 (%ebp)

. sebp

-4(%ebp)

-8(%ebp)

I
“top" of har(8]
stack

sesp. 101 |-16(%ebp)

Overwriting adjacent objects

©) Forward or backward on stack
® Other local variables, arguments

©) Fields within a structure
©) Global variables
©) Other heap objects

Overwriting metadata

£) On stack:

® Return address
® Saved registers, incl. frame pointer

£) On heap:
® Size and location of adjacent blocks

Double free

£) Passing the same pointer value to free more than
once

£) More dangerous the more other heap operations
occur in between

Use after free

£) AKA use of a dangling pointer
£) Could overwrite heap metadata
©) Or, access data with confused type

Outline

Where overflows come from

Library funcs: unusable

©) gets writes unlimited data into supplied buffer
©) No way to use safely (unless stdin trusted)
©) Finally removed in Ci standard

Library funcs: dangerous

) Big three unchecked string functions

® strcpy(dest, src)
® strcat(dest, src)
® sprintf (buf, fmt, ...)

©) Must know lengths in advance to use safely
(complicated for sprintf)
©) Similar pattern in other funcs returning a string

Library funcs: bounded

£ Just add "n":

® strncpy(dest, src, n)

® strncat(dest, src, n)

® snprintf (buf, size, fmt, ...)
©) Tricky points:

® Buffer size vs. max characters to write

® Failing to terminate

® strocpy zero-fill

More library attempts

©) OpenBSD strlcpy, strlcat

® Easier to use safely than “n” versions
® Non-standard, but widely copied

©) Microsoft-pushed strcpy s, etc.

® Now standardized in Cli, but not in glibc
® Runtime checks that abort

©) Compute size and use memcpy
£) C+ std: : string, glib, etc.

Still a problem: truncation

©) Unexpectedly dropping characters from the end of
strings may still be a vulnerability

©) Eq, if attacker pads paths with /////// or
/.. 1./

©) Avoiding length limits is best, if implemented
correctly

Off-by-one bugs

©) strlen does not include the terminator
£) Comparison with < vs. <=
©) Length vs. last index

£) x++ VS, ++x

Even more buffer/size mistakes

£) Inconsistent code changes (use sizeof)

£) Misuse of sizeof (eg., on pointer)

£) Bytes vs. wide chars (UCS-2) vs. multibyte chars
(UTF-8)

£) OS length limits (or lack thereof)

Other array problems

£) Missing/wrong bounds check

® One unsigned comparison suffices
® Two signed comparisons needed

©) Beware of clever loops
® Premature optimization

Outline

More problems

Integer overflow

) Fixed size result = math result

©) Sum of two positive ints negative or less than
addend

£) Also multiplication, left shift, etc.
©) Negation of most-negative value
© (low + high)/2

Integer overflow example

int n = read_int();
obj *p = malloc(n * sizeof(obj));
for (i = 0; 1 < n; i++)

pli]l = read_objQ);

Signed and unsigned

©) Unsigned gives more range for, eg, size t

©) At machine level, many but not all operations are the
same

£) Most important difference: ordering
o) In C, signed overflow is undefined behavior

Mixing integer sizes

£) Complicated rules for implicit conversions
® Also includes signed vs. unsigned

£) Generally, convert before operation:
mEg, 1ULL << 63

£) Sign-extend vs. zero-extend
® char ¢ = Oxff; (int)c

Null pointers

©) Vanilla null dereference is usually non-exploitable
(just a DoS)

£) But not if there could be an offset (e.g, field of struct)

©) And not in the kernel if an untrusted user has
allocated the zero page

Undefined behavior

£) C standard “undefined behavior”: anything could
happen

£) Can be unexpectedly bad for security

£) Most common problem: compiler optimizes
assuming undefined behavior cannot happen

Linux kernel example

struct sock *sk = tun->sk;
// ...
if (!tun)
return POLLERR;
// more uses of tun and sk

Format strings

©) printf format strings are a little interpreter

€ printf (fmt) with untrusted fmt lets the attacker
program it
©) Allows:

® Dumping stack contents
® Denial of service
® Arbitrary memory modifications!

Next time

£) Exploitation techniques for these vulnerabilities

