
Neural networks (Ch. 18)



Biology: brains

Computer science is fundamentally a creative
process: building new & interesting algorithms

As with other creative processes, this involves
mixing ideas together from various places

Neural networks get their inspiration from
how brains work at a fundamental level
(simplification... of course)



Biology: brains

(Disclaimer: I am not a neuroscience-person)
Brains receive small chemical signals at the 
“input” side, if there are enough inputs to
“activate” it signals an “output”



Biology: brains

An analogy is sleeping: when you are asleep,
minor sounds will not wake you up

However, specific sounds in combination
with their volume will wake you up



Biology: brains

Other sounds might help you go to sleep
(my majestic voice?)

Many babies tend to sleep better with “white
noise” and some people like the TV/radio on



Neural network: basics

Neural networks are connected nodes, which
can be arranged into layers (more on this later)

First is an example of a perceptron, the most
simple NN; a single node on a single layer
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Mammals

Let's do an example with mammals...

First the definition of a mammal (wikipedia):

Mammals [posses]: 
(1) a neocortex (a region of the brain), 
(2) hair, 
(3) three middle ear bones, 
(4) and mammary glands



Mammals

Common mammal misconceptions:
(1) Warm-blooded
(2) Does not lay eggs

Let's talk dolphins for one second.
http://mentalfloss.com/article/19116/if-dolphins-are-mammals-and-all-mammals-have-hair-why-arent-dolphins-hairy

Dolphins have hair (technically) for the first
week after birth, then lose it for the rest of life
... I will count this as “not covered in hair” 



Perceptrons

Consider this example: we want to classify
whether or not an animal is mammal via
a perceptron (weighted evaluation)

We will evaluate on:
1. Warm blooded? (WB) Weight = 2
2. Lays eggs? (LE) Weight = -2
3. Covered hair? (CH) Weight = 3



Perceptrons

Consider the following animals:
Humans {WB=y, LE=n, CH=y}, mam=y

Bat {WB=sorta, LE=n, CH=y}, mam=y

What about these?
Platypus {WB=y, LE=y, CH=y}, mam=y
Dolphin {WB=y, LE=n, CH=n}, mam=y
Fish {WB=n, LE=y, CH=n}, mam=n
Birds {WB=y, LE=y, CH=n}, mam=n



Perceptrons

But wait... what is the general form of:

http://mentalfloss.com/article/19116/if-dolphins-are-mammals-and-all-mammals-have-hair-why-arent-dolphins-hairy


Perceptrons

But wait... what is the general form of:

This is simply one side of a plane in 3D,
so this is trying to classify
all possible points using
a single plane...



Perceptrons

If we had only 2 inputs, it would be everything
above a line in 2D, but consider XOR on right

There is no way a line can possibly classify
this (limitation of perceptron)



Neural network: feed-forward

Today we will look at feed-forward NN, where 
information flows in a single direction

Recurrent networks can have outputs of one
node loop back to inputs as previous

This can cause the NN to not converge on an
answer (ask it the same question and it will
respond differently) and also has to maintain
some “initial state” (all around messy)



Neural network: feed-forward

Let's expand our mammal classification to
5 nodes in 3 layers (weights on edges):
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Neural network: feed-forward

You try Bat on this:{WB=0, LE=-1, CH=1}
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Assume (for now) output = sum input



Neural network: feed-forward

Output is -7, so bats are not mammal... Oops...
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Neural network: feed-forward

In fact, this is no better than our 1 node NN

This is because we simply output a linear
combination of weights into a linear function
(i.e. if f(x) and g(x) are linear... then 
g(x)+f(x) is also linear)

Ideally, we want a activation function that
has a limited range so large signals do not
always dominate



Neural network: feed-forward

One commonly used function is the sigmoid:



Back-propagation

The neural network is as good as its structure
and weights on edges

Structure we will ignore (more complex), but
there is an automated way to learn weights

Whenever a NN incorrectly answer a problem,
the weights play a “blame game”...
- Weights that have a big impact to the wrong

answer are reduced



Back-propagation

To do this blaming, we have to find how much
each weight influenced the final answer

Steps:
1.  Find total error
2.  Find derivative of error w.r.t. weights
3.  Penalize each weight by an amount

proportional to this derivative 

(This is just “gradient descent”)



Back-propagation

Consider this example: 4 nodes, 2 layers
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Example from: https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/



Back-propagation
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Back-propagation
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Back-propagation

We will define the error as:
(you will see why shortly)

Suppose we want to find how much w
5
 is

to blame for our incorrectness

We then need to find:
Apply the chain rule:



Back-propagation

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/


Back-propagation

In a picture we did this:

Now that we know w5 is 0.08217 part
responsible, we update the weight by:
w

5
 ←w

5
 - α * 0.0822 = 0.3959 (from 0.4)

α is learning rate, set to 0.5



Back-propagation

For w
1
 it would look like:

(book describes how to dynamic program this)



Back-propagation

Specifically for w
1
 you would get:

Next we have to break down the top equation...



Back-propagation



Back-propagation

Similarly for Error
2
 we get:

You might notice this is small... 
This is an issue with neural networks, deeper
the network the less earlier nodes update



NN examples

Despite this learning shortcoming, NN are
useful in a wide range of applications:

Reading handwriting
Playing games
Face detection
Economic predictions

Neural networks can also be very powerful
when combined with other techniques
(genetic algorithms, search techniques, ...)



NN examples
Examples:
https://www.youtube.com/watch?v=umRdt3zGgpU

https://www.youtube.com/watch?v=qv6UVOQ0F44

https://www.youtube.com/watch?v=xcIBoPuNIiw

https://www.youtube.com/watch?v=0Str0Rdkxxo

https://www.youtube.com/watch?v=l2_CPB0uBkc

https://www.youtube.com/watch?v=0VTI1BBLydE



NN examples

AlphaGo/Zero has been in the news recently, 
and is also based on neural networks

AlphaGo uses Monte-Carlo tree search guided
by the neural network to prune useless parts

Often limiting Monte-Carlo in a static way
reduces the effectiveness, much like mid-state 
evaluations can limit algorithm effectiveness



NN examples

Basically, AlphaGo uses a neural network
to “prune” parts for a Monte-carlo search
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