I More on games (Ch. 5.4-5.7)

(%) IT'S A CHRISTMAS TREE WITH A
HEAP OF PRESENTS (NDERNEATH!
... WERE NOT INVITING

So far we assumed that you have to reach a
I terminal state then propagate backwards
(with possibly pruning)

Mid-state evaluation

More complex games (Go or Chess) it is hard
to reach the terminal states as they are so far
down the tree (and large branching factor)

Instead, we will estimate the value minimax
would give without going all the way down

Mid-state evaluation

By using mid-state evaluations (not terminal)
I the “best” action can be found quickly

These mid-state evaluations need to be:
1. Based on current state only
2. Fast (and not just a recursive search)
3. Accurate (represents correct win/loss rate)

The quality of your final solution is highly
correlated to the quality of your evaluation

Mid-state evaluation

For searches, the heuristic only helps you find
the goal faster (but A* will find the best
solution as long as the heuristic is admissible)

There is no concept of “admissible” mid-state
evaluations... and there is almost no guarantee
that you will find the best/optimal solution

For this reason we only apply mid-state evals
to problems that we cannot solve optimally

I A common mid-state evaluation adds features
I of the state together

Mid-state evaluation

(we did this already for a heuristic...)
eval(starr)=17 GOAL

2o f B
HED a]s e
3fsfe 7isl

We summed the distances to the correct spots
for all numbers

I We then minimax (and prune) these mid-state
I evaluations as if they were the correct values

Mid-state evaluation

You can also weight features (i.e. getting the
top row is more important in 8-puzzle)

A simple method in chess is to assign points
for each piece: pawn=1, knight=4, queen=9...
then sum over all pieces you have in play

I What assumptions do you make if you use
I a weighted sum?

Mid-state evaluation

I What assumptions do you make if you use
I a weighted sum?

Mid-state evaluation

A: The factors are independent
(non-linear accumulation is common if the
relationships have a large etfect)

For example, a rook & queen have a synergy
bonus for being together is non-linear, so
queen=9, rook=>5... but queen&rook = 16

I There is also an issue with how deep should
I we look before making an evaluation?

Mid-state evaluation

Mid-state evaluation

There is also an issue with how deep should
I we look before making an evaluation?

A fixed depth? Problems if child's evaluation
is overestimate and parent underestimate (or
visa versa)

Ideally you would want to stop on states where
the mid-state evaluation is most accurate

Mid-state evaluation

Mid-state evaluations also favor actions that
“put off” bad results (i.e. they like stalling)

In go this would make the computer use up
ko threats rather than give up a dead group

By evaluating only at a limited depth, you
reward the computer for pushing bad news
beyond the depth (but does not stop the bad
news from eventually happening)

I Mid-state evaluation

It is not easy to get around these limitations:
I 1. Push off bad news

2. How deep to evaluate?

A better mid-state evaluation can help
compensate, but they are hard to find

They are normally found by mimicking what
expert human players do, and there is no
systematic good way to find one

Forward pruning

You can also use mid-state evaluations for
I alpha-beta type pruning

However as these evaluations are estimates,
you might prune the optimal answer if the
heuristic is not perfect (which it won't be)

In practice, this prospective pruning is useful
as it allows you to prioritize spending more
time exploring hopeful parts of the search tree

Forward pruning

You can also save time searching by using
“expert knowledge” about the problem

For example, in both Go and Chess the start
of the game has been very heavily analyzed
over the years

There is no reason to redo this search every
time at the start of the game, instead we can
just look up the “best” response

I If we are playing a “game of chance”, we can
I add chance nodes to the search tree

Random games

Instead of either player picking max/min,
it takes the expected value of its children

This expected value is then passed up to the
parent node which can choose to min/max
this chance (or not)

Random games

Here is a simple slot machine example:

I You might need to modify your mid-state
I evaluation if you add chance nodes

Random games

Minimax just cares about the largest/smallest,
but expected value is an implicit average:

R is better L. is better

I Some partially observable games (i.e. card
I games) can be searched with chance nodes

Random games

As there is a high degree of chance, often it is
better to just assume full observability
(i.e. you know the order of cards in the deck)

Then find which actions perform best over all
possible chance outcomes (i.e. all possible
deck orderings)

Random games

For example in blackjack, you can see what
cards have been played and a few of the
current cards in play

You then compute all possible decks that could
lead to the cards in play (and used cards)

Then find the value of all actions (hit or stand)
averaged over all decks (assumed equal
chance of possible decks happening)

Random games

If there are too many possibilities for all the
chance outcomes to “average them all”,
you can sample

This means you can search the chance-tree
and just randomly select outcomes (based on
probabilities) for each chance node

If you have a large number of samples, this
should converge to the average

MCTS

Suppose there are three slot machines and you
know they have different winning percentages

How should you determine which machine
to play?

What is a “good” action at any given point
In time?

| MCTS

I This has been well studied and is called a
I multi-armed bandit problem

The key idea is that there is a balance between
“exploring” options and playing “good” ones

-If you try each one of the slot machines 1/3
of the time, you’ll probably lose money

-If you play each one once, then play the rest
the highest machine, might lose out on best

| MCTS

How to find “good” actions for minimax trees?

I The “Upper Confidence Bound applied to
Trees” UCT is commonly used:

win(n) \/2 In times(parent(n)))

times(n) times(n)

max (
ncchildren

This ensures a trade off between checking
branches you haven't explored much and
exploring hopetul branches

(https://www.youtube.com/watch?v=Fbs4lnGLS8M)

MCTS

win(n)

MCTS

0/9
00 @9 09

times(n)

| \/2 In times(parent(n))

times(n)

https://www.youtube.com/watch?v=Fbs4lnGLS8M

| MCTS

I
I UCB {f‘alue w
<@ ooz <@

Pick max on depth 1 (I'll pick left-most)

lose

(random playout)

lose

update (all the way to root)
(random playout)

| MCTS

'
/000 /0

update UCB values (all nodes)

| MCTS

select max UCB
I on depth 1 @

& rollout 0 /1) (/0 ~Q/Q

win

| MCTS

I update statistics @

00D =D =09

win

| MCTS

I update UCB vals @
1.10/D2.10/D ~Q/Q

| MCTS

select max UCB
I on depth 1 @

win

win

| MCTS

I update UCB vals 0/3
1.50/D2.50/D2.50/1)

| MCTS

select max UCB max on depth 1 a tie,
I on depth 1 can pick either

| MCTS

select max UCB
I on depth 2

also a tie on depth 2,
can pick either (I go left)

I rollout

win

win

times(parent(n))=2

0.2U/71

/

1/1 + V(2 In(2)/1)

| MCTS

So the algorithm’s pseudo-code is:
L.oop:
(1) Start at root
(2) Pick child with best UCB value
(3) If current node visited before,
goto step (2)
(4) Do a random “rollout” and record
result up tree until root

| MCTS

Pros:

(1) The “random playouts” are essentially
generating a mid-state evaluation for you

(2) Has shown to work well on wide & deep
trees, can also combine distributed comp.

Cons:

(1) Does not work well if the state does not
“build up” well

(2) Often does not work on 1-player games

I MCTS 1n games

AlphaGo/Zero has been in the news recently,
I and is also based on neural networks

AlphaGo uses Monte-Carlo tree search guided
by the neural network to prune useless parts

Often limiting Monte-Carlo in a static way
reduces the effectiveness, much like mid-state
evaluations can limit algorithm effectiveness

MCTS 1n games

Basically, AlphaGo uses a neural network

to “prune” parts for a Monte-carlo search
' fﬁ .

/ | :':-:,rE =
- —— i 4
g_’ﬂ - 1:-5 -.I-I" " : -
5, 7o i 2y
g = i . rAA
Z; 3

&
[o -
@
]
% . o
=, Y
o T —-
T ﬁ; =
.
i A g
- & _._Eu § .".__.-ﬁ'!
. @ . R
.. - e .. -..=
Y e & | .
"'\;'-\..'... “— h o "\E = '1“_\ 1Y
"l !] 5 § n 'ﬂ 1% LR
th iy)
T LY : % i\
= B
S G %
n \'.

DIFFICULTY oF
VARIOUS GAMES

EPSY ForR COMPUTERS
|
<NM]
SOWED FoR
Fosmions. (198%)
ME% (775)
PLAY PERFECTLY
oD JR | <Goro)
POSITMION S (2007)
<BEER FNG | 965
COT"EPU-I—PERS CAN FEBRUARY 10, 1996
BEAT ToP HOMANS { R
<CTARGH]
COMPUTERS STiLL
LOSE_TO TOP HUMANS —
(BuT FocuseD RRD
(OULD CHONGE THES) <&
<{SNAKES Ao LADDERS |
<rM~o]
COMPUIERS __
VA A | S
OOUTFLAY HUMANS

HARD

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

