Minimax (Ch. 5-3.

COMPLETE MAP OF OPTIMAL Tic-TAC-TOE MOVES MAP FoR O:

YBUR MOVE 1S GVEN BY THE FOSITICN OF THE LARGEST RED syMBoL ><><’ \<><><
ON THE GRID. WHEN YOUR OFFONENT PCKS A MOVE, ZOOM IN ON _, i
THE REGIn OF THE GRID WHERE. THEY WENT. REPEAT.

MAP FOR X!

Ja

x
s}

A RO
]
(OO
ool
.',1 @ .. h
B,

5 J
B
20

[(
o
L

—

Q
Y

_;J

L

.ﬂ
SN

J
|
i

O ;(_'J___c_;v(

2 OL;‘ESX"IWO;E@* :
5@% 5O
Ehogese X @ ;

s x?d\,z' Rt -'.)>(p<-
\ D R

X
7

(XK

)
S

IR 5

-

= ————]—-— —= o P i
L b !

K
LS

O] X O s

: [o e ><

\\\\ '\—\%\BXL}M 3 /& q
il .o £ g,xlli_ﬂ_d_/- \'>—<f’_2—

>< “
il ™
¥
@)
NP
Xl O
J:\% o
&8/
E\ng N,
tote]
X
A

W)

//'

o
Y b P
! | S /
\ |' 10
/ xoxxibx ><><><
= ;;‘_ yany %] x
z

X
\
O
¥ X
O
X
O

Q
(7344
o]
Ll
N/
b
Oonas
/ ™

uuuuuuu

%)
OXI
i
3l
e
Z
i

lkD

5N

;‘.

-4
T o

ﬁ%gag
Bl

/B

i

]

o

Ei“

ot

™y

S
% ¢

/
rd
™y '5;\
A X J//'<
L@
A .
ra
Wi
A
(./ : ~ (
>\/ OFBNESIO
yd 5‘{: £
N\ XEBIN X X
L OXO 00 \

b

2 T
X
S
O
><\/
o
¢ ' 4
1 OX
NP AN

/‘
X
O X
ol
SRR <
B
0 X
X
P f
<
|

Single-agent

So far we have look at how a single agent can
I search the environment based on its actions

Now we will extend this to cases where you
are not the only one changing the state (i.e.
multi-agent)

The first thing we have to do is figure out
how to represent these types of problems

Multi-agent (competitive)

Most games only have a utility (or value)
I associated with the end of the game (leaf node)

So instead of having a “goal” state (with
possibly infinite actions), we will assume:

(1) All actions eventually lead to terminal state
(i.e. a leaf in the tree)

(2) We know the value (utility) only at leaves

Multi-agent (competitive)

For now we will focus on zero-sum two-player
games, which means a loss for one person is
a gain for another

Betting is a good example of this: If I win I
get $5 (from you), if you win you get $1 (from
me). My gain corresponds to your loss

Zero-sum does not technically need to add to
zero, just that the sum of scores is constant

Multi-agent (competitive)

Z.ero sum games mean rather than representing

outcomes as:
| Me=5, You =-5]

We can represent it with a single number:
[Me=5], as we know: Me+You = 0 (or =c)

This lets us write a single outcome which
“Me” wants to maximize and “You” wants

to minimize

Minimax

Thus the root (our agent) will start with a
maximizing node, the the opponent will get
minimizing noes, then back to max... repeat...

This alternation of maximums and minimums
is called minimax

[will use A to denote nodes that try to
maximize and \/ for minimizing nodes

Minimax

Let's say you are treating a friend to lunch.
I You choose either: Shuang Cheng or Afro Deli

The friend always orders the most inexpensive
item, you want to treat your friend to best food

Which restaurant should you go to?

Menus:
Shuang Cheng: Fried Rice=$10.25, Lo Mein=$8.55

Afro Deli: Cheeseburger=$6.25, Wrap=%$8.74

Minimax

/\

Shuang Cheng Afro Deli

.0 Mein v Fried Cheese- v Wrap

rice DUrger

Minimax

You could phrase this problem as a set of
I maximum and minimums as:

max(min(8.55, 10.25), min(6.25, 8.55))

... which corresponds to:
max(Shuang Cheng choice, Afro Deli choice)

If our goal is to spend the most money on
our friend, we should go to Shuang Cheng

Minimax

One way to solve this is from the leaves up:

| /\

L F R

LRLR
0

Minimax

max(min(1,3), 2, min(0, 4)) = 2, should pick
: action F

I Minimax A
I L E R
| N M
S A A
i AN
Solve this minimax - v
problem: -

I This representation works, but even in small
I games you can get a very large search tree

Minimax

For example, tic-tac-toe has about 9! actions
to search (or about 300,000 nodes)

Larger problems (like chess or go) are not
feasible for this approach (more on this
next class)

Minimax

“Pruning” in real life:

I Snip branch

Alpha-beta pruning

However, we can get the same answer with
I searching less by using efficient “pruning”

It is possible to prune a minimax search that
will never “accidentally” prune the optimal
solution

A popular technique for doing this is called
alpha-beta pruning (see next slide)

Alpha-beta pruning

This can apply to max nodes as well, so we
I propagate the best values for max/min in tree

Alpha-beta pruning algorithm:
Do minimax as normal, except:
Going down tree: pass “best max/min” values
min node: if parent's “best max” greater than
current node, go back to parent immediately
max node: if parent's “best min” less than
current node, go back to parent immediately

I Let's solve this with alpha-beta pruning

| /\

L F R

LRLR
0

Alpha-beta pruning

I [.et best max be and best min be

I Branches L to R: . 1 =7
| =7

L F R

Alpha-beta pruning

€CC A €€ | »
I l

I [.et best max be and best min be

I Branches L to R: . 1 =7
| =7

L F R

Alpha-beta pruning

€CC A €€ | »
I l

I [.et best max be and best min be

I Branches L to R: . 1 =7
| =7

L F R

Alpha-beta pruning

€CC A €€ | »
I l

I [.et best max be and best min be

I Branches L to R: . 1 =7
| =7

L F R

Alpha-beta pruning

€CC A €€ | »
I l

I [.et best max be and best min be

I Branches L to R: ﬂ r=1
=

L F R

Alpha-beta pruning

€CC A €€ | »
I l

I [.et best max be and best min be

I Branches L to R: a =)
=

L F R

Alpha-beta pruning

€CC A €€ | »
I l

I [.et best max be and best min be

I Branches L to R: a =)
=

L F R

Alpha-beta pruning

€CC A €€ | »
I l

I [.et best max be and best min be

I Branches L to R: a =)
=

L F R

Alpha-beta pruning

€CC A €€ | »
I l

I [.et best max be and best min be

I Branches L to R: +=p OStOp EXplOHDg
A

ll -/V 1_0
4

Alpha-beta pruning

€CC A €€ | »
I l

Alpha-beta pruning

€CC A €€ | »
I l

[.et best max be and best min be

Branches L to R: a =)
Done! | =7

L F R

Alpha-beta pruning

max(min(1,3), 2, min(0, ??)) = 2, should pick

Order: action F
NN
3",
PNAEIDY ¢
‘I

I aff pruning A
I L E R
| N M
S A A
i AN
Solve this problem - v
with alpha-beta pruning: -

Alpha-beta pruning

In general, alpha-beta pruning allows you to
I search to a depth 2d for the minimax search
cost of depth d

So if minimax needs to find; b™
Then, alpha-beta searches: b™"

This is exponentially better, but the worst case
is the same as minimax

I Alpha-beta pruning

Ideally you would want to put your best
I (largest for max, smallest for min) actions first

This way you can prune more of the tree as
a min node stops more often for larger “best”

Obviously you do not know the best move,
(otherwise why are you searching?) but some
effort into guessing goes a long way

(i.e. exponentially less states)

I Side note:

In alpha-beta pruning, the heuristic for
guess which move is best can be complex,
as you can greatly etffect pruning

While for A* search, the heuristic had to be

very fast to be useful
(otherwise computing the heuristic would take

longer than the original search)

I This rule of checking “best max” vs. “best
I min” only really works for two player games...

Alpha-beta pruning

What about 3 player games?

3-player games

For more than two player games, you need to
I provide values at every state for all the players

When it is the player's turn, they get to pick
the action that maximizes their own value
the most

(We will assume each agent is greedy and only
wants to increase its own score... more on this
next time)

3-player games

(The node number shows who is max-ing)

I What should player 1 do?
What can you prune?

(433

I 3-player games

How would you do alpha-beta pruning in a
I 3-player game?

I How would you do alpha-beta pruning in a
I 3-player game?

3-player games

TL;DR: Not easily

(also you cannot prune at all if there is no
range on the values even in a zero sum game)

This is because one player could take a very
low score for the benefit of the other two

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 8
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

