
Local Search (Ch. 4-4.1)

Local search

Before we tried to find a path from the start
state to a goal state using a “fringe” set

Now we will look at algorithms that do not
care about a “fringe”, but just neighbors

Some problems, may not have a clear “best”
goal, yet we have some way of evaluating
the state (how “good” is a state)

Local search

We will discuss four optimization algorithms:

1. Hill climbing
2. Simulated annealing
3. Beam search (next time)
4. Genetic algorithms (next time)

All of these will only consider neighbors
while looking for a goal

Local search

General properties of local searches:
- Fast and low memory
- Can find “good” solutions if can estimate

state value
- Hard to find “optimal” path

In general these types of searches are used
if the tree is too big to find a real “optimal”
solution

Hill climbing

Remember greedy best-first search?
1. Pick add neighbors;

pick smallest fringe
2. Repeat 1...

Hill climbing is only a slight variation:
1. Pick best between: yourself and child
2. Repeat 1...

What are the pros and cons of this?

Hill climbing

This actually works surprisingly well, if getting
“close” to the goal is sufficient (and actions
are not too restrictive)

Newton's method:

Hill climbing

Hill climbing

For the 8-puzzles we had 2 (consistent)
heuristics:

h1 - number of mismatched pieces
h2 - ∑ Manhattan distance from number's

current to goal position

Let's try hill climbing this
problem!

Hill climbing

Can get stuck in:
- Local maximum
- Plateau/shoulder

Local maximum will
have a range of
attraction around it

Can get an infinite
loop in a plateau if not careful (step count)

Hill climbing

To avoid these pitfalls, most local searches
incorporate some form of randomness

Hill search variants:
Stochastic hill climbing - choose random move

from better solutions

Random-restart hill search - run hill search
until maximum found (or looping), then
start at another random spot and repeat

Simulated annealing

The idea behind simulated annealing is we
act more random at the start (to “explore”),
then take greedy choices later

An analogy might be a hard boiled egg:
1. To crack the shell you hit rather hard

(not too hard!)
2. You then hit lightly to create a

cracked area around first
3. Carefully peal the rest

https://www.youtube.com/watch?v=qfD3cmQbn28

Simulated annealing

The process is:
1. Pick random action and evaluation result
2. If result better than current, take it
3. If result worse accept probabilistically
4. Decrease acceptance chance in step 3
5. Repeat...

(see: SAacceptance.cpp)
Specifically, we track some “temperature” T:
3. Accept with probability:
4. Decrease T (linear? hard to find best...)

Simulated annealing

Let's try SA on 8-puzzle:

Simulated annealing

Let's try SA on 8-puzzle:

This example did not work
well, but probably due to
the temperature handling

We want the temperature to be fairly high at
the start (to move around the graph)

The hard part is slowly decreasing it over time

Simulated annealing

SA does work well on the traveling salesperson
problem

	Slide 1
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

