
Rational Agents (Ch. 2)

Agent models

Can also classify agents into four categories:

1. Simple reflex
2. Model-based reflex
3. Goal based
4. Utility based

Top is typically simpler and harder to adapt
to similar problems, while bottom is more
general representations (generalization)

Agent models

A simple reflex agents acts only on the most
recent part of the percept and not the whole
history

Our vacuum agent is of this type, as it only
looks at the current state and not any previous

These can be generalized as:
“if state = ____ then do action ____”
(often can fail or loop infinitely)

Agent models

A model-based reflex agent needs to have a
representation of the environment in memory
(called internal state)

This internal state is updated with each
observation and then dictates actions

The degree that the environment is modeled
is up to the agent/designer (a single bit vs.
a full representation)

Agent models

This internal state should be from the agent's
perspective, not a global perspective
(as same global state might have different
actions)

Consider these pictures of a maze:
Which way to go? Pic 1 Pic 2

Agent models

The global perspective is the same, but the
agents could have different goals (stars)

Goals are not global information

Pic 1 Pic 2

Agent models

We also saw this when we were talking
about agent functions (also from agent’s
perspective, not global)

Agent models

For the vacuum agent if the dirt does not
reappear, then we do not want to keep moving

The simple reflex agent program cannot do
this, so we would have to have some memory
(or model)

This could be as simple as a flag indicating
whether or not we have checked the other state

Agent models

The goal based agent is more general than
the model-based agent

In addition to the environment model, it has a
goal indicating a desired configuration

Abstracting to a goals generalizes your method
to different (similar) problems
(for example, a model-based agent a specific
tree/graph, goal-based can solve any)

Agent models

A utility based agent maps the sequence of
states (or actions) to a real value

Goals can describe general terms as “success”
or “failure”, but there is no degree of success

If you want to go upstairs, a goal based agent
could find the closest way up...
A utility based agent could accommodate
your preferences between stairs vs. elevator

Agent models

What is the agent model of particles?

Think of a way to improve the agent and
describe what model it is now

Environment classification

Environments can be further classified on
the following characteristics:(right side harder)

1. Fully vs. partially observable
2. Single vs. multi-agent
3. Deterministic vs. stochastic
4. Episodic vs. sequential
5. Static vs. dynamic
6. Discrete vs. continuous
7. Known vs. unknown

Environment classification

In a fully observable environment, agents can
see every part.

Agents can only see part of the environment
if it is partially observable

Full Partial

Environment classification

If your agent is the only one, the environment
is a single agent environment

More than one is a multi-agent environment
(possibly cooperative or competitive)

single

multi

Environment classification

If your state+action has a single known
outcome in the environment, it is deterministic

If actions have a distribution (probability) of
possible effects, it is stochastic

deterministic

stochastic

Environment classification

An episodic environment is where the previous
action does not effect the next observation
(i.e. can be broken into independent events)

If there is the next action depends on the
previous, the environment is sequential

episodic

sequential

Environment classification

If the environment only changes when you
make an action, it is static

a dynamic environment can change while
your agent is thinking or observing

dynamicstatic

Environment classification

Discrete = separate/distinct (events)
Continuous = fluid transition (between events)

This classification can applies: agent's percept
and actions, environment's time and states

continuous (state)discrete (state)

Environment classification

Known = agent's actions have known effects
on the environment

Unknown = the actions have an initially
unknown effect on the environment (can learn)

know how to stop
do not
know
how
to stop

Environment classification
1. Fully vs. partially observable = how much can you see?
2. Single vs. multi-agent

= do you need to worry about others interacting?
3. Deterministic vs. stochastic

= do you know (exactly) the outcomes of actions?
4. Episodic vs. sequential

= do your past choices effect the future?
5. Static vs. dynamic = do you have time to think?
6. Discrete vs. continuous

= are you restricted on where you can be?
7. Known vs. unknown

= do you know the rules of the game?

Environment classification

Some of these classifications are associated
with the state, while others with the actions
State: Actions:
1. Fully vs. partially observable
2. Single vs. multi-agent

3. Deterministic vs. stochastic
4. Episodic vs. sequential

5. Static vs. dynamic
6. Discrete vs. continuous
7. Known vs. unknown

Environment classification

Pick a game/hobby/sport/pastime/whatever
and describe both the PEAS and whether the
environment/agent is:
1. Fully vs. partially observable
2. Single vs. multi-agent
3. Deterministic vs. stochastic
4. Episodic vs. sequential
5. Static vs. dynamic
6. Discrete vs. continuous
7. Known vs. unknown

Environment classification

What? Perfor
mance

Environ
ment

Actuator
s

Sensors

Ring fit level
score

multiple
tracks

wheel
move

wheel,
leg pos

Partially observable, single agent,
deterministic, sequential, dynamic (sorta),
continuous, known (tells you what to do if
stuck)

State structure

An atomic state has no sub-parts and acts
as a simple unique identifier

An example is an elevator:
Elevator = agent (actions = up/down)
Floor = state

In this example, when someone requests the
elevator on floor 7, the only information the
agent has is what floor it currently is on

State structure

A factored state has a fixed number of
variables/attributes associated with it

You can then reason on how these associated
values change between states to solve problem

Can always “un-factor” and enumerate all
possibilities to go back to atomic states,
but might be too exponential or lose efficiency

State structure

Structured states simply describe objects and
their relationship to others

Suppose we have 3 blocks: A, B and C
We could describe: A on top of B, C next to B

A factored representation would have to
enumerate all possible configurations of
A, B and C to be as representative

State structure

We will start using structured approaches
when we deal with logic:

Summer implies Warm
Warm implies T-Shirt

The current state might be:
!Summer (¬Summer)
but the states have intrinsic relations between
each other (not just actions)

Search

Goal based agents need to search to find a
path from their start to the goal (a path is a
sequence of actions, not states)

For now we consider problem solving agents
who search on atomically structured spaces

We will focus on uninformed searches for now,
which only know cost between states but no
other extra information

41

Search

In the vacuum example, the states and actions
I gave upfront (so only one option)

In more complex environments, we have a
choice of how to abstract the problem into
simple (yet expressive) states and actions

The solution to the abstracted problem should
be able to serve as the basis of a more detailed
problem (i.e. fit the detailed solution inside)

42

Search

Example: Google maps gives direction by
telling you a sequence of roads and does not
dictate speed, stop signs/lights, road lane

43

Search

In deterministic environments the search
solution is a single sequence (list of actions)

Stochastic environments need multiple
sequences to account for all possible outcomes
of actions

It can be costly to keep track of all of these
and might be better to keep the most likely
and search again when off the main sequences

44

Search

There are 5 parts to search:
1. Initial state
2. Actions possible at each state
3. Transition model (result of each action)
4. Goal test (are we there yet?)
5. Path costs/weights (not stored in states)

(related to performance measure)

In search we normally fully see the problem
and the initial state and compute all actions

45

states are nodes in tree/graph
actions are edges

Small examples

Here is our vacuum world again:

2. For all states, we have actions: L, R or S
3. Transition model = black arrows
5. Path cost = ??? (from performance measure)

1. initial

4. goals

46

Small examples

8-Puzzle
1. (semi) Random
2. All states: U,D,L,R
4. As shown here
5. Path cost = 1 (move count)
3. Transition model (example):

Result(,D) =

(see: https://www.youtube.com/watch?v=DfVjTkzk2Ig)

47

Small examples

8-Puzzle is NP complete so to find the best
solution, we must brute force

3x3 board = = 181,440 states

4x4 board = 1.3 trillion states
Solution time: milliseconds

5x5 board = 1025 states
Solution time: hours

48

Small examples

8-Queens: how to fit 8 queens on a 8x8 board
so no 2 queens can capture each other

Two ways to model this:
Incremental = each action is to

add a queen to the board
(1.8 x 1014 states)

Complete state formulation = all 8 queens start
on board, action = move a queen
(2057 states)

49

Real world examples

Directions/traveling (land or air)

Model choices: only have interstates?
Add smaller roads, with increased cost?
(pointless if they are never taken)

50

Real world examples

Traveling salesperson problem (TSP): Visit
each location exactly once and return to start

Goal: Minimize distance traveled

52

Search algorithm

To search, we will build a tree with the root as
the initial state

(Use same procedure for multiple algorithms)

53

Search algorithm

What are states/actions for this problem?

54

Search algorithm

Multiple options, but this is a good choice

55

Search algorithm

Multiple options, but this is a good choice

56

A

B C

turn left turn right

E D F G

I H

L J

...

Search algorithm

What are the problems with this?

57

Search algorithm
58

Search algorithm

We can remove visiting states multiple times
by doing this:

But this is still not necessarily all that great...

60

Search algorithm

When we find a goal state, we can back track
via the parent to get the sequence

To keep track of the unexplored nodes, we will
use a queue (of various types)

The explored set is probably best as a hash
table for quick lookup (have to ensure similar
states reached via alternative paths are the
same in the has, can be done by sorting)

62

	Slide 1
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 31
	Slide 35
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 60
	Slide 62

