
CSci 4271W
Development of Secure Software Systems

Day 28: Final bonus topics
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Control-flow integrity (CFI)

Logistics intermission

More modern exploit techniques

More causes of crypto failure

DNSSEC

Some philosophy

Remember allowlist vs. denylist?

Rather than specific attacks, tighten behavior
Compare: type system; garbage collector vs.
use-after-free

CFI: apply to control-flow attacks

Basic CFI principle

Each indirect jump should only go to a
programmer-intended (or compiler-intended) target

I.e., enforce call graph

Often: identify disjoint target sets

Approximating the call graph

One set: all legal indirect targets

Two sets: indirect calls and return points

n sets: needs possibly-difficult points-to analysis

Target checking: classic

Identifier is a unique 32-bit value

Can embed in effectively-nop instruction

Check value at target before jump

Optionally add shadow stack

Target checking: classic

cmp [ecx], 12345678h

jne error_label

lea ecx, [ecx+4]

jmp ecx

Challenge 1: performance

In CCS’05 paper: 16% avg., 45% max.
Widely varying by program
Probably too much for on-by-default

Improved in later research
Common alternative: use tables of legal targets



Challenge 2: compatibility

Compilation information required

Must transform entire program together

Can’t inter-operate with untransformed code

More recent advances: COTS

Commercial off-the-shelf binaries

CCFIR (Berkeley+PKU, Oakland’13): Windows

CFI for COTS Binaries (Stony Brook, USENIX’13):
Linux

COTS techniques

CCFIR: use Windows ASLR information to find targets

Linux paper: keep copy of original binary, build
translation table

Control-Flow Guard

CFI-style defense now in latest Windows systems

Compiler generates tables of legal targets

At runtime, table managed by kernel, read-only to
user-space

Coarse-grained counter-attack

“Out of Control” paper, Oakland’14

Limit to gadgets allowed by coarse policy
Indirect call to function entry
Return to point after call site (“call-preceded”)

Use existing direct calls to VirtualProtect

Also used against kBouncer

Control-flow bending counter-attack

Control-flow attacks that still respect the CFG

Especially easy without a shadow stack

Printf-oriented programming generalizes
format-string attacks

Outline

Control-flow integrity (CFI)

Logistics intermission

More modern exploit techniques

More causes of crypto failure

DNSSEC

SRT reminder

Thanks to the approx. half of you who filled out the
online SRT

Others, please consider devoting a bit of time tonight
or tomorrow

https://srt.umn.edu/blue



Final project submission

Two components: fixing patch and revised report

Take advantage of sample attacks posted on Piazza

Page limit increased to 6 pages

Due on Canvas by Wednesday night
Left-over extension can extend to Friday night, or on-time
for 5% extra credit

Last lab section tomorrow

There will be a lab section at the normal time
tomorrow

Last scheduled Zoom event of the semester

Topic: counter-attack against W � X and ASLR

Outline

Control-flow integrity (CFI)

Logistics intermission

More modern exploit techniques

More causes of crypto failure

DNSSEC

Target #1: web browsers

Widely used on desktop and mobile platforms

Easily exposed to malicious code

JavaScript is useful for constructing fancy attacks

Heap spraying

How to take advantage of uncontrolled jump?

Maximize proportion of memory that is a target

Generalize NOP sled idea, using benign allocator

Under W�X, can’t be code directly

JIT spraying

Can we use a JIT compiler to make our sleds?

Exploit unaligned execution:
Benign but weird high-level code (bitwise ops. with
constants)
Benign but predictable JITted code
Becomes sled + exploit when entered unaligned

JIT spray example

25 90 90 90 3c and $0x3c909090,%eax

25 90 90 90 3c and $0x3c909090,%eax

25 90 90 90 3c and $0x3c909090,%eax

25 90 90 90 3c and $0x3c909090,%eax

JIT spray example

90 nop

90 nop

90 nop

3c 25 cmp $0x25,%al

90 nop

90 nop

90 nop

3c 25 cmp $0x25,%al



Use-after-free

Low-level memory error of choice in web browsers

Not as easily audited as buffer overflows

Can lurk in attacker-controlled corner cases

JavaScript and Document Object Model (DOM)

Sandboxes and escape

Chrome NaCl: run untrusted native code with SFI
Extra instruction-level checks somewhat like CFI

Each web page rendered in own, less-trusted
process
But not easy to make sandboxes secure

While allowing functionality

Chained bugs in Pwnium 1

Google-run contest for complete Chrome exploits
First edition in spring 2012

Winner 1: 6 vulnerabilities

Winner 2: 14 bugs and “missed hardening
opportunities”

Each got $60k, bugs promptly fixed

Outline

Control-flow integrity (CFI)

Logistics intermission

More modern exploit techniques

More causes of crypto failure

DNSSEC

Side-channel attacks
Timing analysis:

Number of 1 bits in modular exponentiation
Unpadding, MAC checking, error handling
Probe cache state of AES table entries

Power analysis
Especially useful against smartcards

Fault injection

Data non-erasure
Hard disks, “cold boot” on RAM

WEP “privacy”

First WiFi encryption standard: Wired Equivalent
Privacy (WEP)

F&S: designed by a committee that contained no
cryptographers
Problem 1: note “privacy”: what about integrity?

Nope: stream cipher + CRC = easy bit flipping

WEP shared key

Single key known by all parties on network

Easy to compromise

Hard to change

Also often disabled by default

Example: a previous employer

WEP key size and IV size

Original sizes: 40-bit shared key (export restrictions)
plus 24-bit IV = 64-bit RC4 key

Both too small

128-bit upgrade kept 24-bit IV
Vague about how to choose IVs
Least bad: sequential, collision takes hours
Worse: random or everyone starts at zero



WEP RC4 related key attacks

Only true crypto weakness

RC4 “key schedule” vulnerable when:
RC4 keys very similar (e.g., same key, similar IV)
First stream bytes used

Not a practical problem for other RC4 users like SSL
Key from a hash, skip first output bytes

More recent problem with WPA (CCS’17)

Session key set up in a 4-message handshake

Key reinstallation attack: replay #3
Causes most implementations to reset nonce and replay
counter
In turn allowing many other attacks
One especially bad case: reset key to 0

Protocol state machine behavior poorly described in
spec

Outside the scope of previous security proofs

Trustworthiness of primitives

Classic worry: DES S-boxes

Obviously in trouble if cipher chosen by your
adversary

In a public spec, most worrying are unexplained
elements

Best practice: choose constants from well-known
math, like digits of �

Dual EC DRBG (1)

Pseudorandom generator in NIST standard, based on
elliptic curve

Looks like provable (slow enough!) but strangely no
proof

Specification includes long unexplained constants

Academic researchers find:
Some EC parts look good
But outputs are statistically distinguishable

Dual EC DRBG (2)

Found 2007: special choice of constants allows
prediction attacks

Big red flag for paranoid academics

Significant adoption in products sold to US govt.
FIPS-140 standards

Semi-plausible rationale from RSA (EMC)

NSA scenario basically confirmed by Snowden leaks
NIST and RSA immediately recommend withdrawal

Outline

Control-flow integrity (CFI)

Logistics intermission

More modern exploit techniques

More causes of crypto failure

DNSSEC

DNS: trusted but vulnerable

Almost every higher-level service interacts with DNS

UDP protocol with no authentication or crypto
Lots of attacks possible

Problems known for a long time, but challenge to fix
compatibly

DNSSEC goals and non-goals

+ Authenticity of positive replies

+ Authenticity of negative replies

+ Integrity

- Confidentiality

- Availability



First cut: signatures and certificates

Each resource record gets an RRSIG signature
E.g., A record for one name!address mapping
Observe: signature often larger than data

Signature validation keys in DNSKEY RRs

Recursive chain up to the root (or other “anchor”)

Add more indirection

DNS needs to scale to very large flat domains like
.com

Facilitated by having single DS RR in parent indicating
delegation

Chain to root now includes DSes as well

Negative answers

Also don’t want attackers to spoof non-existence
Gratuitous denial of service, force fallback, etc.

But don’t want to sign “x does not exist” for all x

Solution 1, NSEC: “there is no name between acacia

and baobab”

Preventing zone enumeration

Many domains would not like people enumerating all
their entries

DNS is public, but “not that public”

Unfortunately NSEC makes this trivial

Compromise: NSEC3 uses password-like salt and
repeated hash, allows opt-out

DANE: linking TLS to DNSSEC

“DNS-based Authentication of Named Entities”

DNS contains hash of TLS cert, don’t need CAs

How is DNSSEC’s tree of certs better than TLS’s?

Signing the root

Political problem: many already distrust US-centered
nature of DNS infrastructure

Practical problem: must be very secure with no
single point of failure
Finally accomplished in 2010

Solution involves ‘key ceremonies’, international
committees, smart cards, safe deposit boxes, etc.

Deployment

Standard deployment problem: all cost and no
benefit to being first mover

Servers working on it, mostly top-down

Clients: still less than 20%

Will probably be common for a while: insecure
connection to secure resolver

What about privacy?

Users increasingly want privacy for their DNS
queries as well
Older DNSCurve and DNSCrypt protocols were not
standardized
More recent “DNS over TLS” and “DNS over HTTPS”
are RFCs
DNS over HTTPS in major browsers might have
serious centralization effects


