CSci 427\W
Development of Secure Software Systems
Day 28: Final bonus topics

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Control-flow integrity (CFlI)

Some philosophy

©) Remember allowlist vs. denylist?

©) Rather than specific attacks, tighten behavior
® Compare: type system; garbage collector vs.
use-after-free

©) CFI: apply to control-flow attacks

Basic CFl principle

£) Each indirect jump should only go to a

programmer-intended (or compiler-intended) target

£ lLe, enforce call graph
£) Often: identify disjoint target sets

Approximating the call graph

©) One set: all legal indirect targets
£) Two sets: indirect calls and return points
©) n sets: needs possibly-difficult points-to analysis

Target checking: classic

£ Identifier is a unique 32-bit value

£) Can embed in effectively-nop instruction
£) Check value at target before jump

£) Optionally add shadow stack

Target checking: classic

cmp [ecx], 12345678h
jne error_label

lea ecx, [ecx+4]

jmp ecx

Challenge 1. performance

€ In CCS'05 paper: 16% avg., 45% max.
® Widely varying by program
® Probably too much for on-by-default
£ Improved in later research
= Common alternative: use tables of legal targets

Challenge 2: compatibility

©) Compilation information required
©) Must transform entire program together
£) Can't inter-operate with untransformed code

More recent advances: COTS

) Commercial off-the-shelf binaries
£) CCFIR (Berkeley+PKU, Oakland13): Windows

£) CFl for COTS Binaries (Stony Brook, USENIX'13):
Linux

COTS technigues

£) CCFIR: use Windows ASLR information to find targets
©) Linux paper: keep copy of original binary, build
translation table

Control-Flow Guard

£) CFl-style defense now in latest Windows systems
£) Compiler generates tables of legal targets

£) At runtime, table managed by kernel, read-only to
user-space

Coarse-grained counter-attack

£) "Out of Control” paper, Oakland'14

o) Limit to gadgets allowed by coarse policy

® Indirect call to function entry
® Return to point after call site (“call-preceded”)

£) Use existing direct calls to VirtualProtect
©) Also used against kBouncer

Control-flow bending counter-attack

£) Control-flow attacks that still respect the CFG
£) Especially easy without a shadow stack

£ Printf-oriented programming generalizes
format-string attacks

Outline

Logistics intermission

SRT reminder

£) Thanks to the approx. half of you who filled out the
online SRT

£) Others, please consider devoting a bit of time tonight
or tomorrow

€ https://srt.umn.edu/blue

Final project submission

©) Two components: fixing patch and revised report
©) Take advantage of sample attacks posted on Piazza
£) Page limit increased to 6 pages

©) Due on Canvas by Wednesday night

® Left-over extension can extend to Friday night, or on-time
for 5% extra credit

Last lab section tomorrow

£) There will be a lab section at the normal time
tomorrow

©) Last scheduled Zoom event of the semester
£) Topic: counter-attack against W @ X and ASLR

Outline

More modern exploit techniques

Target #1. web browsers

£) Widely used on desktop and mobile platforms
£) Easily exposed to malicious code
£) JavaScript is useful for constructing fancy attacks

Heap spraying

£) How to take advantage of uncontrolled jump?

£) Maximize proportion of memory that is a target
£) Generalize NOP sled idea, using benign allocator
£) Under WX, can't be code directly

JIT spraying

£) Can we use a JIT compiler to make our sleds?

) Exploit unaligned execution:
® Benign but weird high-level code (bitwise ops. with
constants)
® Benign but predictable JITted code
® Becomes sled + exploit when entered unaligned

JIT spray example

25 90 90 90 3c and $0x3c909090, jeax
25 90 90 90 3c and $0x3c909090, eax
25 90 90 90 3c and $0x3c909090, %eax
25 90 90 90 3c and $0x3c909090, %eax

JIT spray example

90 nop
90 nop
90 nop
3c 25 cmp $0x25,%al
90 nop
90 nop
90 nop

3c 25 cmp $0x25,%al

Use-after-free

©) Low-level memory error of choice in web browsers
£) Not as easily audited as buffer overflows

©) Can lurk in attacker-controlled corner cases

©) JavaScript and Document Object Model (DOM)

Sandboxes and escape

£) Chrome NaCl: run untrusted native code with SFI
® Extra instruction-level checks somewhat like CFI
£) Each web page rendered in own, less-trusted
process
©) But not easy to make sandboxes secure
® While allowing functionality

Chained bugs in Pwnium 1

£) Google-run contest for complete Chrome exploits
® First edition in spring 2012

©) Winner 1. 6 vulnerabilities

©) Winner 2: 14 bugs and “"missed hardening
opportunities”

©) Each got $60k, bugs promptly fixed

Outline

More causes of crypto failure

Side-channel attacks

©) Timing analysis:
® Number of 1 bits in modular exponentiation
® Unpadding, MAC checking, error handling
® Probe cache state of AES table entries

©) Power analysis
® Especially useful against smartcards
©) Fault injection

©) Data non-erasure
® Hard disks, “cold boot” on RAM

WEP “privacy”

£) First WiFi encryption standard: Wired Equivalent
Privacy (WEP)
£) F&S: designed by a committee that contained no
cryptographers
©) Problem 1. note “privacy”: what about integrity?
® Nope: stream cipher + CRC = easy bit flipping

WEP shared key

©) Single key known by all parties on network
©) Easy to compromise

©) Hard to change

£) Also often disabled by default

©) Example: a previous employer

WEP key size and IV size

£) Original sizes: 40-bit shared key (export restrictions)

plus 24-bit IV = 64-bit RC4 key
® Both too small
£) 128-bit upgrade kept 24-bit IV

® Vague about how to choose IVs
® Least bad: sequential, collision takes hours
® Worse: random or everyone starts at zero

WEP RCA4 related key attacks

©) Only true crypto weakness

£) RC4 “key schedule” vulnerable when:

® RC4 keys very similar (e.g, same key, similar IV)
) First stream bytes used

©) Not a practical problem for other RC4 users like SSL
® Key from a hash, skip first output bytes

More recent problem with WPA (CCS'17)

£) Session key set up in a 4-message handshake

£) Key reinstallation attack: replay #3
® Causes most implementations to reset nonce and replay
counter
® In turn allowing many other attacks
® One especially bad case: reset key to O
£) Protocol state machine behavior poorly described in
spec
® Outside the scope of previous security proofs

Trustworthiness of primitives

) Classic worry: DES S-boxes

£) Obviously in trouble if cipher chosen by your
adversary

o) In a public spec, most worrying are unexplained
elements

) Best practice: choose constants from well-known
math, like digits of 7t

Dual EC DRBG (1)

£) Pseudorandom generator in NIST standard, based on
elliptic curve

£) Looks like provable (slow enough!) but strangely no
proof

£) Specification includes long unexplained constants

) Academic researchers find:

® Some EC parts look good
® But outputs are statistically distinguishable

Dual EC DRBG (2)

©) Found 2007: special choice of constants allows
prediction attacks
® Big red flag for paranoid academics
©) Significant adoption in products sold to US govt.
FIPS-140 standards
® Semi-plausible rationale from RSA (EMC)
£) NSA scenario basically confirmed by Snowden leaks
® NIST and RSA immediately recommend withdrawal

Outline

DNSSEC

DNS: trusted but vulnerable

©) Almost every higher-level service interacts with DNS
) UDP protocol with no authentication or crypto
® Lots of attacks possible
£) Problems known for a long time, but challenge to fix
compatibly

DNSSEC goals and non-goals

+ Authenticity of positive replies
+ Authenticity of negative replies
+ Integrity

Confidentiality

Availability

First cut: signatures and certificates

£) Each resource record gets an RRSIG signature

® Eg, A record for one name—address mapping
® Observe: signature often larger than data

©) Signature validation keys in DNSKEY RRs
©) Recursive chain up to the root (or other “anchor”)

Add more indirection

£) DNS needs to scale to very large flat domains like
.com

£) Facilitated by having single DS RR in parent indicating
delegation

£) Chain to root now includes DSes as well

Negative answers

©) Also don't want attackers to spoof non-existence
® Gratuitous denial of service, force fallback, etc.

£) But don't want to sign “x does not exist” for all x

©) Solution 1, NSEC: “there is no name between acacia
and baobab”

Preventing zone enumeration

£) Many domains would not like people enumerating all
their entries

£) DNS is public, but "not that public”
©) Unfortunately NSEC makes this trivial

) Compromise: NSEC3 uses password-like salt and
repeated hash, allows opt-out

DANE: linking TLS to DNSSEC

©) "DNS-based Authentication of Named Entities”
©) DNS contains hash of TLS cert, don't need CAs
©) How is DNSSEC's tree of certs better than TLS's?

Signing the root

£) Political problem: many already distrust US-centered
nature of DNS infrastructure

£) Practical problem: must be very secure with no
single point of failure
£ Finally accomplished in 2010

® Solution involves ‘key ceremonies’, international
committees, smart cards, safe deposit boxes, etc.

Deployment

£) Standard deployment problem: all cost and no
benefit to being first mover

©) Servers working on it, mostly top-down
©) Clients: still less than 20%

©) Will probably be common for a while: insecure
connection to secure resolver

What about privacy?

£) Users increasingly want privacy for their DNS
queries as well

£) Older DNSCurve and DNSCrypt protocols were not
standardized

£) More recent "DNS over TLS” and "DNS over HTTPS”
are RFCs

£) DNS over HTTPS in major browsers might have
serious centralization effects

