CSci 427\W
Development of Secure Software Systems
Day 27: More low-level defenses

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Return address protections

Canary in the coal mine

Adjacent canary idea

L*2 |12(sebp)

8(%ebp)

4(%ebp)

l«—— %ebp

-4(%ebp)

int_|.g(%ebp)

“top" of char(8]
stack

sesp___, | 101 |-16(%ebp)

Terminator canary

©) Value hard to reproduce because it would tell the

copy to stop
©) StackGuard: 0x00 OD OA FF
® O: String functions
® newline: fgets(), etc.
8 -1 getc()
® carriage return: similar to newline?

©) Doesn't stop: memcpy, custom loops

Random canary

£) Can't reproduce because attacker can't guess
£) For efficiency, usually one per execution
£ Ineffective if disclosed

XOR canary

©) Want to protect against non-sequential overwrites
©) XOR return address with value c at entry

©) XOR again with ¢ before return

©) Standard choice for c: see random canary

Further refinements

£) More flexible to do earlier in compiler

©) Rearrange buffers after other variables
® Reduce chance of non-control overwrite

£) Skip canaries for functions with only small variables
® Who has an overflow bug in an 8-byte array?

What's usually not protected?

©) Backwards overflows

£) Function pointers

©) Adjacent structure fields

©) Adjacent static data objects

Where to keep canary value

©) Fast to access
£) Buggy code/attacker can't read or write
©) Linux/x86: %gs:0x14

Complex anti-canary attack

£) Canary not updated on fork in server
£) Attacker controls number of bytes overwritten

Complex anti-canary attack

£) Canary not updated on fork in server

£) Attacker controls number of bytes overwritten
©) ANRY BNRY CNRY DNRY ENRY FNRY

o) search 232 — search 4 - 28

Shadow return stack

©) Suppose you have a safe place to store the canary
©) Why not just store the return address there?

©) Needs to be a separate stack

©) Ultimate return address protection

Outline

Intermission for SRT

Why is this important?

£) This is a relatively new class: help us figure out what
we should do differently next time

©) Which things worked well, which things should be
different?

©) What should there be more of, and what less of?

£) How do the topics compare with what you
expected?

SRT logistics

©) All online this semester

£) Requested but not required; can't affect your grade
one way or the other

£) Primary evaluation combines Prof. McCamant and
the course

£) Please also evaluate Saugata separately if you have
comments or suggestions about his performance

£) Open through the last regular class day

SRT URL

) https://srt.umn.edu/blue

©) We'll have a 15-minute break in class material that
we request you use for filling out the evaluation

Outline

Report revision suggestions

Logistics reminders

£) Two components: fixing patch and revised report
©) Take advantage of sample attacks posted on Piazza

©) Page limit increased to 6 pages, may need to
reduce some old material
® Still need to decide what's most important

£) Due on Canvas by Wednesday night

Big picture

£ If you didn't follow the requirements the first time, do
this time

£) Don't spend too much time describing the program

£) Your attack understanding should be supported by

concrete details
® Use exemption of figures from length limit

Writing reminders

£) Use complete sentences (e.g., avoid comma splices)
£) Avoid being too “editorial” (facts over opinions)

Outline

ASLR and counterattacks

Basic idea

£) "Address Space Layout Randomization”
£) Move memory areas around randomly so attackers
can't predict addresses
©) Keep internal structure unchanged
® Eg, whole stack moves together

Code and data locations

£) Execution of code depends on memory location
£ Eg, on 32-bit x86:
® Direct jumps are relative

® Function pointers are absolute
® Data must be absolute

Relocation (Windows)

) Extension of technique already used in compilation

©) Keep table of absolute addresses, instructions on
how to update

©) Disadvantage: code modifications take time on load,
prevent sharing

PIC/PIE (GNU/Linux)

) “Position-Independent Code / Executable”

£) Keep code unchanged, use register to point to data
area

©) Disadvantage: code complexity, register pressure
hurt performance

What's not covered

©) Main executable (Linux 32-bit PIC)
©) Incompatible DLLs (Windows)
©) Relative locations within a module/area

Entropy limitations

£ Intuitively, entropy measures amount of randomness,
in bits
£) Random 32-bit int: 32 bits of entropy

£) ASLR page aligned, so at most 32 — 12 = 20 bits of
entropy

£) Other constraints further reduce possibilities

Leakage limitations

0 If an attacker learns the randomized base address,
can reconstruct other locations

©) Any stack address — stack unprotected, etc.

Outline

Control-flow integrity (CFI)

Some philosophy

©) Remember allowlist vs. denylist?

©) Rather than specific attacks, tighten behavior

® Compare: type system; garbage collector vs.
use-after-free

©) CFl: apply to control-flow attacks

Basic CFI principle

£) Each indirect jump should only go to a
programmer-intended (or compiler-intended) target

©) le, enforce call graph
£) Often: identify disjoint target sets

Approximating the call graph

©) One set: all legal indirect targets
©) Two sets: indirect calls and return points
) n sets: needs possibly-difficult points-to analysis

Target checking: classic

©) ldentifier is a unique 32-bit value

£) Can embed in effectively-nop instruction
£) Check value at target before jump

£) Optionally add shadow stack

Target checking: classic

cmp [ecx], 12345678h
jne error_label

lea ecx, [ecx+4]

jmp ecx

Challenge 1. performance

©) In CCS'05 paper: 16% avg., 45% max.
® Widely varying by program
® Probably too much for on-by-default
©) Improved in later research
= Common alternative: use tables of legal targets

Challenge 2: compatibility

£) Compilation information required
£) Must transform entire program together
©) Can't inter-operate with untransformed code

Recent advances: COTS

) Commercial off-the-shelf binaries
£) CCFIR (Berkeley+PKU, Oakland'13): Windows

£) CFl for COTS Binaries (Stony Brook, USENIX'13):

Linux

COTS technigues

£) CCFIR: use Windows ASLR information to find targets
©) Linux paper: keep copy of original binary, build
translation table

Control-Flow Guard

) CFl-style defense now in latest Windows systems

£) Compiler generates tables of legal targets

£) At runtime, table managed by kernel, read-only to

user-space

Coarse-grained counter-attack

£) "Out of Control” paper, Oakland'14

©) Limit to gadgets allowed by coarse policy

® Indirect call to function entry
® Return to point after call site (“call-preceded”)

©) Use existing direct calls to VirtualProtect
©) Also used against kBouncer

Control-flow bending counter-attack

) Control-flow attacks that still respect the CFG
©) Especially easy without a shadow stack

) Printf-oriented programming generalizes
format-string attacks

Outline

More modern exploit techniques

Target #1. web browsers

£) Widely used on desktop and mobile platforms
£) Easily exposed to malicious code
£) JavaScript is useful for constructing fancy attacks

Heap spraying

£) How to take advantage of uncontrolled jump?

£) Maximize proportion of memory that is a target
£) Generalize NOP sled idea, using benign allocator
£) Under WX, can't be code directly

JIT spraying

£) Can we use a JIT compiler to make our sleds?

) Exploit unaligned execution:
® Benign but weird high-level code (bitwise ops. with
constants)
® Benign but predictable JITted code
® Becomes sled + exploit when entered unaligned

JIT spray example

25 90 90 90 3c and $0x3c909090, jeax
25 90 90 90 3c and $0x3c909090, eax
25 90 90 90 3c and $0x3c909090, %eax
25 90 90 90 3c and $0x3c909090, %eax

JIT spray example

90 nop
90 nop
90 nop
3c 25 cmp $0x25,%al
90 nop
90 nop
90 nop
3c 25 cmp $0x25,%al

Use-after-free

©) Low-level memory error of choice in web browsers
£) Not as easily audited as buffer overflows

©) Can lurk in attacker-controlled corner cases

©) JavaScript and Document Object Model (DOM)

Sandboxes and escape

£) Chrome NaCl: run untrusted native code with SFI
® Extra instruction-level checks somewhat like CFI
£) Each web page rendered in own, less-trusted
process
©) But not easy to make sandboxes secure
® While allowing functionality

Chained bugs in Pwnium 1

£) Google-run contest for complete Chrome exploits
® First edition in spring 2012
©) Winner 1. 6 vulnerabilities
©) Winner 2: 14 bugs and “"missed hardening
opportunities”
©) Each got $60k, bugs promptly fixed

