CSci 427\W
Development of Secure Software Systems
Day 19: Network protocols, contd

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline
Key distribution and PKI

Public key authenticity

) Public keys don't need to be secret, but they must
be right

£) Wrong key — can't stop middleperson
£) So we still have a pretty hard distribution problem

Symmetric key servers

£) Users share keys with server, server distributes
session keys

£) Symmetric key-exchange protocols, or channels
£) Standard: Kerberos
£) Drawback: central point of trust

Certificates

©) A name and a public key, signed by someone else
® C, = Signg(A, Ka)

©) Basic unit of transitive trust

£) Commonly use a complex standard “X.509"

Certificate authorities

£) "CA” for short: entities who sign certificates
£) Simplest model: one central CA
£) Works for a single organization, not the whole world

Web of trust

) Pioneered in PGP for email encryption
©) Everyone is potentially a CA: trust people you know

£) Works best with security-motivated users
® Ever attended a key signing party?

CA hierarchies

£) Organize CAs in a tree
£) Distributed, but centralized (like DNS)
£) Check by follow a path to the root

£) Best practice: sub CAs are limited in what they
certify

PKI for authorization

©) Enterprise PKI can link up with permissions

£) One approach: PKI maps key to name, ACL maps
name to permissions

©) Often better: link key with permissions directly, name

is a comment
® More like capabilities

The revocation problem

£) How can we make certs “"go away” when needed?
) Impossible without being online somehow

1. Short expiration times

2. Certificate revocation lists

3. Certificate status checking

Outline

Cryptographic protocols, contd

Abstract protocols

£) Outline of what information is communicated in
messages
® Omit most details of encoding, naming, sizes, choice of
ciphers, etc.
) Describes honest operation
® But must be secure against adversarial participants

£) Seemingly simple, but many subtle problems

Protocol notation

A — B : Ng,{To, B, NgJk,
©) A — B: message sent from Alice intended for Bob
©) B (after :): Bob's name
o {- - -}x: encryption with key K

Anti-pattern: “oracle”

£) Any way a legitimate protocol service can give a
capability to an adversary

£) Can exist whenever a party decrypts, signs, etc.

£) “Padding oracle” was an instance of this at the
implementation level

Needham-Schroeder

Mutual authentication via nonce exchange, assuming
public keys (core):

A — B: {Na,Alg,

B—A: {NAaNB}EA

A—B: {NB}EB

Needham-Schroeder MITM

A—C: {NA,A}EC
C—oB: {NA,A}EB
B — C: {Na,Ngle,
C— A: {Na,Ngj,
A—C: {NB}EC
C—-B: {NB}EB

Certificates, Denning-Sacco

©) A certificate signed by a trusted third-party S binds
an identity to a public key
® C, = Signg(A, Ka)
©) Suppose we want to use S in establishing a session
A—=S: AB
key Kag: S—A: CA, Cg
A — B: Ca, Csg, {Sign, (Kap)lk,

Attack against Denning-Sacco

A—S: A/B

S—A: CA, CB

A — B: Ca, Cg,{Signa (Kas)
B—S: B,C

S—B: CB, CC

B— C: Ca, Cc,{SignA(KAB)}KC
By re-encrypting the signed key, Bob can pretend to be
Alice to Charlie

Envelopes analogy

©) Encrypt then sign, or vice-versa?

£) On paper, we usually sign inside an envelope, not
outside. Two reasons:
® Attacker gets letter, puts in his own envelope (cf. attack
against X.509)
® Signer claims “didn't know what was in the envelope”
(failure of non-repudiation)

Design robustness principles

£) Use timestamps or nonces for freshness

£) Be explicit about the context

©) Don't trust the secrecy of others’ secrets

£) Whenever you sign or decrypt, beware of being an
oracle

£) Distinquish runs of a protocol

Implementation principles

©) Ensure unigue message types and parsing

©) Design for ciphers and key sizes to change
©) Limit information in outbound error messages
£) Be careful with out-of-order messages

Outline

Blind SQL injection (demo)

Outline

SSH

Short history of SSH

©) Started out as freeware by Tatu Yl6nen in 1995
£) Original version commercialized

£) Fully open-source OpenSSH from OpenBSD

£) Protocol redesigned and standardized for "SSH 2"

OpenSSH t-shirt

www - OpenSSH: <o~

Putting an end to unencrypted network logins

SSH host keys

£) Every SSH server has a public/private keypair
) Ideally, never changes once SSH is installed

©) Early generation a classic entropy problem
® Especially embedded systems, VMs

Authentication methods

£) Password, encrypted over channel
£) .shosts: like .rhosts, but using client host key
©) User-specific keypair
® Public half on server, private on client
©) Plugins for Kerberos, PAM modules, etc.

Old crypto vulnerabilities

£ 1.x had only CRC for integrity
® Worst case: when used with RC4

) Injection attacks still possible with CBC
® CRC compensation attack

£) For least-insecure 1.x-compatibility, attack detector

©) Alas, detector had integer overflow worse than
original attack

Newer crypto vulnerabilities

©) IV chaining: IV based on last message ciphertext

® Allows chosen plaintext attacks
® Better proposal: separate, random IVs

©) Some tricky attacks still left

® Send byte-by-byte, watch for errors
® Of arguable exploitability due to abort

©) Now migrating to CTR mode

SSH over SSH

£) SSH to machine 1, from there to machine 2
= Common in these days of NATs

£) Better: have machine 1 forward an encrypted
connection

1. No need to trust 1 for secrecy

2. Timing attacks against password typing

SSH (non-)PKI

£) When you connect to a host freshly, a mild note
©) When the host key has changed, a large warning

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! Q

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now
(man-in-the-middle attack)!

It is also possible that a host key has just been changed.

Outline

SSL/TLS

SSL/TLS

©) Developed at Netscape in early days of the public

web
® Usable with other protocols too, eg. IMAP

£) SSL 1.0 pre-public, 2.0 lasted only one year, 3.0

much better
©) Renamed to TLS with RFC process
® TLS 10 improves SSL 3.0

) TLS 11 and 1.2 in 2006 and 2008, only gradual
adoption

IV chaining vulnerability

£) TLS 1.0 uses previous ciphertext for CBC IV

) But, easier to attack in TLS:

® More opportunities to control plaintext
® Can automatically repeat connection

£) "BEAST" automated attack in 2011 TLS 1.1 wakeup
call

Compression oracle vuln.

©) Compr(S || A), where S should be secret and A is
attacker-controlled

£) Attacker observes ciphertext length
O If A is similar to S, combination compresses better
£) Compression exists separately in HTTP and TLS

But wait, there’s morel

£) Too many vulnerabilities to mention them all in

lecture
£) Kaloper-Mersinjak et al. have longer list
® “Lessons learned” are variable, though

£) Meta-message: don't try this at home

HTTPS hierarchical PKI

©) Browser has order of 100 root certs

® Not same set in every browser
® Standards for selection not always clear

©) Many of these in turn have sub-CAs
©) Also, “wildcard” certs for individual domains

Hierarchical trust?

£) No. Any CA can sign a cert for any domain

£) A couple of CA compromises recently

£) Most major governments, and many companies
you've never heard of, could probably make a
google.com cert

) Still working on: make browser more picky, compare
notes

CA vs. leaf checking bug

©) Certs have a bit that says if they're a CA

o) All but last entry in chain should have it set

©) Browser authors repeatedly fail to check this bit
o) Allows any cert to sign any other cert

MD5 certificate collisions

£) MD5 collisions allow forging CA certs

) Create innocuous cert and CA cert with same hash

® Requires some guessing what CA will do, like sequential
serial numbers
® Also 200 PS3s

£) Oh, should we stop using that hash function?

CA validation standards

£) CA’s job to check if the buyer really is foo.com

©) Race to the bottom problem:

® CA has minimal liability for bad certs
® Many people want cheap certs
® Cost of validation cuts out of profit

©) "Extended validation” (green bar) certs attempt to fix

HTTPS and usability

£) Many HTTPS security challenges tied with user
decisions
0 Is this really my bank?

£) Seems to be a quite tricky problem

® Security warnings often ignored, etc.
®» We'll return to this as a major example later

Outline

More causes of crypto failure

Random numbers and entropy

£) Cryptographic RNGs use cipher-like techniques to
provide indistinguishability
£) But rely on truly random seeding to stop brute force
® Extreme case: no entropy — always same “randomness”
£) Modern best practice: seed pool with 256 bits of

entropy
® Suitable for security levels up to 22¢

Netscape RNG failure

©) Early versions of Netscape SSL (1994-1995) seeded
with:
® Time of day
® Process ID
® Parent process ID

) Best case entropy only 64 bits
® (Not out of step with using 40-bit encryption)

£) But worse because many bits guessable

Debian/OpenSSL RNG failure (1)

£) OpenSSL has pretty good scheme using
/dev/urandom
£) Also mixed in some uninitialized variable values
® “Extra variation can't hurt”
£) From modern perspective, this was the original sin
® Remember undefined behavior discussion?

£) But had no immediate ill effects

Debian/OpenSSL RNG failure (2)

) Debian maintainer commented out some lines to fix
a Valgrind warning
® "Potential use of uninitialized value”

£) Accidentally disabled most entropy (all but 16 bits)

©) Brief mailing list discussion didn't lead to
understanding
©) Broken library used for ~2 years before discovery

Detected RSA/DSA collisions

£) 2012: around 1% of the SSL keys on the public net
are breakable
® Some sites share complete keypairs
® RSA keys with one prime in common (detected by
large-scale GCD)
£) One likely culprit: insufficient entropy in key
generation
® Embedded devices, Linux /dev/urandom Vs.
/dev/random

£) DSA signature algorithm also very vulnerable

New factoring problem (CCS'17)

©) An Infineon RSA library used primes of the form
p =k- M+ (65537¢ mod M)
©) Smaller problems: fingerprintable, less entropy

©) Major problem: can factor with a variant of

Coppersmith’s algoritm
® Eg, 3 CPU months for a 1024-bit key

Side-channel attacks

©) Timing analysis:
® Number of 1 bits in modular exponentiation
® Unpadding, MAC checking, error handling
® Probe cache state of AES table entries

£) Power analysis

® Especially useful against smartcards
£) Fault injection
£) Data non-erasure

® Hard disks, “cold boot” on RAM

WEP “privacy”

) First WiFi encryption standard: Wired Equivalent
Privacy (WEP)
£) F&S: designed by a committee that contained no
cryptographers
©) Problem 1. note “privacy”: what about integrity?
® Nope: stream cipher + CRC = easy bit flipping

WEP shared key

£) Single key known by all parties on network
£) Easy to compromise

£) Hard to change

£) Also often disabled by default

£) Example: a previous employer

WEP key size and IV size

©) Original sizes: 40-bit shared key (export restrictions)
plus 24-bit IV = 64-bit RC4 key
® Both too small
£) 128-bit upgrade kept 24-bit IV

® Vague about how to choose IVs
® Least bad: sequential, collision takes hours
® Worse: random or everyone starts at zero

WEP RC4 related key attacks

£) Only true crypto weakness

£) RC4 “key schedule” vulnerable when:
® RC4 keys very similar (e.g, same key, similar 1V)
® First stream bytes used

©) Not such a problem for other RC4 users like SSL
® Key from a hash, skip first output bytes

New problem with WPA (CCS'17)

£) Session key set up in a 4-message handshake

©) Key reinstallation attack: replay #3
® Causes most implementations to reset nonce and replay
counter
® In turn allowing many other attacks
® One especially bad case: reset key to O

) Protocol state machine behavior poorly described in
spec
® Outside the scope of previous security proofs

Trustworthiness of primitives

£) Classic worry: DES S-boxes

£) Obviously in trouble if cipher chosen by your
adversary

©) In a public spec, most worrying are unexplained
elements

£) Best practice: choose constants from well-known
math, like digits of 7t

Dual EC DRBG (1)

©) Pseudorandom generator in NIST standard, based on
elliptic curve

©) Looks like provable (slow enough!) but strangely no
proof

) Specification includes long unexplained constants

©) Academic researchers find:

® Some EC parts look good
® But outputs are statistically distinguishable

Dual EC DRBG (2)

©) Found 2007: special choice of constants allows
prediction attacks
® Big red flag for paranoid academics
£ Significant adoption in products sold to US govt.
FIPS-140 standards
= Semi-plausible rationale from RSA (EMC)
£) NSA scenario basically confirmed by Snowden leaks
® NIST and RSA immediately recommend withdrawal

