CSci 427\W
Development of Secure Software Systems
Day 12: OS auditing and isolation

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Exercise: auditing for OS-related bugs

Understanding the OS context

©) Which code is running with privileges?
©) Which parts of the environment are untrusted?
£) Which directories are trusted or untrusted?

Common problems to look for

£) Attacker-controlled shell commands

) Effects of attacker-controlled environment

£) TOCTTOU vulnerabilities in filesystem checks
£) Races in filesystem modifications

OS context for BCLPR

©) Printer management on system with untrusted users

©) BCLPR binary is setuid root

©) Printer-related directories under /var/bclpr are
trusted

©) Normal usage: print a user's own text or PDF file

Generic UNIX local threat model

£) Ultimate attacker goal of privilege escalation to root
£) Direct: inject shellcode into setuid program

©) Examples of indirect attacks:
® Write privileged config file (e.qg, /etc/passwd, root
crontab)
® Read secret config file (€9, root SSH private key)
® Set an attacker binary to be setuid root
® (Trick human sysadmin into doing something)

Your task for BCLPR

©) Find places in the code that indicate OS-related
vulnerabilities

£) Prioritize by which are most likely/easiest to exploit

) Make list of line numbers and bug types to share via
chat

Outline

OS: protection and isolation

OS security topics

©) Resource protection

©) Process isolation

©) User authentication (will cover later)
©) Access control (already covered)

Protection and isolation

£) Resource protection: prevent processes from
accessing hardware

£) Process isolation: prevent processes from interfering
with each other

©) Design: by default processes can do neither
£) Must request access from operating system

Reference monitor

£) Complete mediation: all accesses are checked

©) Tamperproof: the monitor is itself protected from
modification

©) Small enough to be thoroughly verified

Hardware basis: memory protection

©) Historic: segments
£) Modern: paging and page protection
= Memory divided into pages (e.q. 4k)

® Every process has own virtual to physical page table
® Pages also have R/W/X permissions

Linux 32-bit example

Oxffffffff

Kernel
use only
0xc0000000

wwwwww

0x40000000

mditean

Static code + data

0x08048000

Usually unused

|«— owerene aoe s — |

Hardware basis: supervisor bit

£) Supervisor (kernel) mode: all instructions available

£) User mode: no hardware or VM control instructions

£) Only way to switch to kernel mode is specified entry
point

£) Also generalizes to multiple “rings”

Outline

More choices for isolation

Ideal: least privilege

£) Programs and users should have the most limited
set of powers needed to do their job
£) Presupposes that privileges are suitably divisible
® Contrast: Unix root

“Trusted”, TCB

o) In security, “trusted” is a bad word

o) X is trusted: X can break your security
©) “Untrusted” = okay if it's evil

) Trusted Computing Base (TCB): minimize

Restricted languages

£) Main application: code provided by untrusted parties
) Packet filters in the kernel

£) JavaScript in web browsers
® Also Java, Flash ActionScript, etc.

SFI

) Software-based Fault Isolation

o) Instruction-level rewriting
® Analogous to but predates control-flow integrity

©) Limit memory stores and sometimes loads
©) Can't jump out except to designated points
©) Eg., Google Native Client

Separate processes

£) OS (and hardware) isolate one process from another
£) Pay overhead for creation and communication

£) System call interface allows many possibilities for
mischief

System-call interposition

©) Trusted process examines syscalls made by
untrusted

©) Implement via ptrace (like strace, gdb) or via kernel
change

) Easy policy: deny

Interposition challenges

£) Argument values can change in memory (TOCTTOU)
£) OS objects can change (TOCTTOU)

£) How to get canonical object identifiers?

©) Interposer must accurately model kernel behavior

£) Details: Garfinkel (NDSS'03)

Separate users

©) Reuse OS facilities for access control

o) Unit of trust: program or application

) Older example: gmail

©) Newer example: Android

o) Limitation: lots of things available to any user

chroot

£) Unix system call to change root directory
£) Restrict/virtualize file system access

£) Only available to root

£) Does not isolate other namespaces

0OS-enabled containers

©) One kernel, but virtualizes all namespaces
©) FreeBSD jails, Linux LXC, Solaris zones, etc.
©) Quite robust, but the full, fixed, kernel is in the TCB

(System) virtual machines

) Presents hardware-like interface to an untrusted
kernel

£) Strong isolation, full administrative complexity
£ 1/0 interface looks like a network, etc.

Virtual machine designs

©) (Type 1) hypervisor: ‘superkernel’ underneath VMs
£) Hosted: regular OS underneath VMs

©) Paravirtualizaion: modify kernels in VMs for ease of
virtualization

Virtual machine technologies

£) Hardware based: fastest, now common
©) Partial translation: e.g,, original VMware

£ Full emulation: e.g. QEMU proper
® Slowest, but can be a different CPU architecture

Modern example: Chrom(ium)

£) Separates “browser kernel” from less-trusted

“rendering engine”
® Pragmatic, keeps high-risk components together

©) Experimented with various Windows and Linux
sandboxing techniques

©) Blocked 70% of historic vulnerabilities, not all new
ones

) http://seclab.stanford.edu/websec/chromium/

Outline

Next: the web from a security perspective

Once upon a time: the static web

£) HTTP: stateless file download protocol
® TCR usually using port 80
£) HTML: markup language for text with formatting and
links
©) All pages public, so no need for authentication or
encryption

Web applications

£) The modern web depends heavily on active software
£) Static pages have ads, paywalls, or “Edit” buttons
£) Many web sites are primarily forms or storefronts

£) Web hosted versions of desktop apps like word
processing

Server programs

) Could be anything that outputs HTML
©) In practice, heavy use of databases and frameworks
£) Wide variety of commercial, open-source, and
custom-written
) Flexible scripting languages for ease of development
® PHP Ruby, Perl, etc.

Client-side programming

£) Java: nice language, mostly moved to other uses

£) ActiveX: Windows-only binaries, no sandboxing
® Glad to see it on the way out
£ Flash and Silverlight: most important use is DRM-ed
video
£) Core language: JavaScript

JavaScript and the DOM

£) JavaScript (JS) is a dynamically-typed prototype-O0O
language
® No real similarity with Java
©) Document Object Model (DOM): lets JS interact with
pages and the browser

©) Extensive security checks for untrusted-code model

Same-origin policy

©) Origin is a tuple (scheme, host, port)
® Eg, (http, www.umn.edu, 80)
£) Basic JS rule: interaction is allowed only with the
same origin
) Different sites are (mostly) isolated applications

GET, POST, and cookies

©) GET request loads a URL, may have parameters
delimited with 7, &, =
® Standard: should not have side-effects
£) POST request originally for forms
® Can be larger, more hidden, have side-effects
) Cookie: small token chosen by server, sent back on
subsequent requests to same domain

User and attack models

£) "Web attacker” owns their own site
(www.attacker.com)
® And users sometimes visit it
® Realistic reasons: ads, SEO
£) "Network attacker” can view and sniff unencrypted
data
® Unprotected coffee shop WiFi

