
CSci 4271W
Development of Secure Software Systems

Day 6: Memory safety defenses and counter-attacks
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

W�X (DEP)

Return-oriented programming (ROP)

Announcements break

ROP shellcoding exercise

Basic idea

Traditional shellcode must go in a memory area that
is

writable, so the shellcode can be inserted
executable, so the shellcode can be executed

But benign code usually does not need this
combination

W xor X, really :(W ^ X)

Non-writable code, X! :W

E.g., read-only .text section

Has been standard for a while, especially on Unix

Lets OS efficiently share code with multiple program
instances

Non-executable data, W ! :X

Prohibit execution of static data, stack, heap

Not a problem for most programs
Incompatible with some GCC features no one uses
Non-executable stack opt-in on Linux, but now
near-universal

Implementing W � X

Page protection implemented by CPU
Some architectures (e.g. SPARC) long supported W � X

x86 historically did not
One bit controls both read and execute
Partial stop-gap “code segment limit”

Eventual obvious solution: add new bit
NX (AMD), XD (Intel), XN (ARM)

One important exception

Remaining important use of self-modifying code:
just-in-time (JIT) compilers

E.g., all modern JavaScript engines

Allow code to re-enable execution per-block
mprotect, VirtualProtect
Now a favorite target of attackers

Counterattack: code reuse

Attacker can’t execute new code

So, take advantage of instructions already in binary

There are usually a lot of them

And no need to obey original structure

Classic return-to-libc (1997)

Overwrite stack with copies of:
Pointer to libc’s system function
Pointer to "/bin/sh" string (also in libc)

The system function is especially convenient

Distinctive feature: return to entry point

Chained return-to-libc

Shellcode often wants a sequence of actions, e.g.
Restore privileges
Allow execution of memory area
Overwrite system file, etc.

Can put multiple fake frames on the stack
Basic idea present in 1997, further refinements

Outline

W�X (DEP)

Return-oriented programming (ROP)

Announcements break

ROP shellcoding exercise

Pop culture analogy: ransom note trope

Basic new idea

Treat the stack like a new instruction set

“Opcodes” are pointers to existing code

Generalizes return-to-libc with more programmability

Academic introduction and source of name: Hovav
Shacham, ACM CCS 2007

ret2pop (Nergal, Müller)

Take advantage of shellcode pointer already present
on stack
Rewrite intervening stack to treat the shellcode
pointer like a return address

A long sequence of chained returns, one pop

ret2pop (Nergal, Müller) Gadgets

Basic code unit in ROP

Any existing instruction sequence that ends in a
return

Found by (possibly automated) search

Another partial example Overlapping x86 instructions

push %esi

mov $0x56,%dh sbb $0xff,%al inc %eax or %al,%dh

movzbl 0x1c(%esi),%edx incl 0x8(%eax) ...

0f b6 56 1c ff 40 08 c6

Variable length instructions can start at any byte

Usually only one intended stream

Where gadgets come from

Possibilities:
Entirely intended instructions
Entirely unaligned bytes
Fall through from unaligned to intended

Standard x86 return is only one byte, 0xc3

Building instructions

String together gadgets into manageable units of
functionality
Examples:

Loads and stores
Arithmetic
Unconditional jumps

Must work around limitations of available gadgets

Hardest case: conditional branch

Existing jCC instructions not useful

But carry flag CF is

Three steps:
1. Do operation that sets CF
2. Transfer CF to general-purpose register
3. Add variable amount to %esp

Further advances in ROP

Can also use other indirect jumps, overlapping not
required

Automation in gadget finding and compilers

In practice: minimal ROP code to allow transfer to
other shellcode

Outline

W�X (DEP)

Return-oriented programming (ROP)

Announcements break

ROP shellcoding exercise

Office hours

Me: Mondays 1-2pm, TBA, or email for appointment

Saugata: Mondays 4-5pm, Thursdays 10-11am

Zoom links coming soon to Canvas page

Project 1 status

Badly Coded developers implementing last few
features

Expect code release over weekend, full instructions
by next lecture

Initial due date (attacks and first report) will be 10/9

Important of attacks and shellcoding

Constructing attacks will be important for the project

Keeping looking at yesterday’s lab if you didn’t finish,
we’ll come back to this next week

Outline

W�X (DEP)

Return-oriented programming (ROP)

Announcements break

ROP shellcoding exercise

Setup

Key motivation for ROP is to disable W � X

Can be done with a single syscall, similar to execve

shellcode

Your exercise for today: put together such shellcode
from a limited gadget set

Puzzle/planning aspect: order to avoid overwriting

