THE URV & SINGULAR VALUE DECOMPOSITIONS

- Orthogonal subspaces;
- Orthogonal projectors; Orthogonal decomposition;
- The URV decomposition
- Introduction to the Singular Value Decomposition
- The SVD existence and properties.

Orthogonal projectors and subspaces

Notation: Given a supspace \mathcal{X} of \mathbb{R}^m define

$$\mathcal{X}^{\perp} = \{ y \mid y \perp x, \; \; orall \; x \; \in \mathcal{X} \}$$

- \blacktriangleright Let $Q = [q_1, \cdots, q_r]$ an orthonormal basis of $\mathcal X$
- How would you obtain such a basis?
- > Then define orthogonal projector $P = QQ^T$

Properties

- $\begin{array}{ll} \text{(a)} \ P^2 = P & \text{(b)} \ (I P)^2 = I P \\ \text{(c)} \ Ran(P) = \mathcal{X} & \text{(d)} \ Null(P) = \mathcal{X}^{\perp} \\ \text{(e)} \ Ran(I P) = Null(P) = \mathcal{X}^{\perp} \end{array}$
- Note that (b) means that *I P* is also a projector
 AB: 1.1. 2.2. 2.4; TB: 4-5; GvL 2.4, 5.4-5 SVD

9-2

9-4

Proof. (a), (b) are trivial

(c): Clearly $Ran(P) = \{x | x = QQ^Ty, y \in \mathbb{R}^m\} \subseteq \mathcal{X}$. Any $x \in \mathcal{X}$ is of the form $x = Qy, y \in \mathbb{R}^m$. Take $Px = QQ^T(Qy) = Qy = x$. Since x = Px, $x \in Ran(P)$. So $\mathcal{X} \subseteq Ran(P)$. In the end $\mathcal{X} = Ran(P)$.

9-1

(e): Need to show inclusion both ways. • $x \in Null(P) \leftrightarrow Px = 0 \leftrightarrow (I - P)x = x \rightarrow x \in Ran(I - P)$ • $x \in Ran(I - P) \leftrightarrow \exists y \in \mathbb{R}^m | x = (I - P)y \rightarrow Px = P(I - P)y = 0 \rightarrow x \in Null(P)$

9-3

Result: Any $x \in \mathbb{R}^m$ can be written in a unique way as $x = x_1 + x_2, \quad x_1 \in \mathcal{X}, \quad x_2 \in \mathcal{X}^\perp$

$$\blacktriangleright$$
 Proof: Just set $x_1=Px, \ \ x_2=(I-P)x$

- ▶ Note: $\mathcal{X} \cap \mathcal{X}^{\perp} = \{0\}$
- ► Therefore: $\mathbb{R}^m = \mathcal{X} \oplus \mathcal{X}^\perp$
- **>** Called the *Orthogonal Decomposition*

Orthogonal decomposition

► In other words $\mathbb{R}^m = P\mathbb{R}^m \oplus (I - P)\mathbb{R}^m$ or: $\mathbb{R}^m = Ran(P) \oplus Ran(I - P)$ or: $\mathbb{R}^m = Ran(P) \oplus Null(P)$ or: $\mathbb{R}^m = Ran(P) \oplus Ran(P)^{\perp}$

▶ Can complete basis $\{q_1, \cdots, q_r\}$ into orthonormal basis of \mathbb{R}^m , q_{r+1}, \cdots, q_m

► $\{q_{r+1}, \cdots, q_m\}$ = basis of \mathcal{X}^{\perp} . \rightarrow $dim(\mathcal{X}^{\perp}) = m - r$.

> Express the above with bases for \mathbb{R}^m :

 $[\underbrace{u_1,u_2,\cdots,u_r}_{Ran(A)},\underbrace{u_{r+1},u_{r+2},\cdots,u_m}_{Null(A^T)}]$

9-5

and for \mathbb{R}^n $[\underbrace{v_1, v_2, \cdots, v_r}_{Ran(A^T)}, \underbrace{v_{r+1}, v_{r+2}, \cdots, v_n}_{Null(A)}]$

▶ Observe $u_i^T A v_j = 0$ for i > r or j > r. Therefore

$$U^TAV = R = egin{pmatrix} C & 0 \ 0 & 0 \end{pmatrix}_{m imes n} \quad C \in \ \mathbb{R}^{r imes r} \quad \longrightarrow$$

 $A = URV^T$

9-7

General class of URV decompositions

Four fundamental supspaces - URV decomposition

Let $A \in \mathbb{R}^{m imes n}$ and consider $\operatorname{Ran}(A)^{\perp}$

Property 1: $\operatorname{Ran}(A)^{\perp} = Null(A^T)$

Proof: $x \in \operatorname{Ran}(A)^{\perp}$ iff (Ay, x) = 0 for all y iff $(y, A^T x) = 0$ for all y ...

Property 2: $\operatorname{Ran}(A^T) = Null(A)^{\perp}$

Take $\mathcal{X} = \operatorname{Ran}(A)$ in orthogonal decomoposition. A fundamental subspaces

$(A) Null(A^T)$
(A^{T}) $Null(A)$

9-6

Far from unique.

Show how you can get a decomposition in which C is lower (or upper) triangular, from the above factorization.

> Can select decomposition so that R is upper triangular \rightarrow URV decomposition.

 \blacktriangleright Can select decomposition so that R is lower triangular \rightarrow ULV decomposition.

SVD = special case of URV where R = diagonal

How can you get the ULV decomposition by using only the Householder QR factorization (possibly with pivoting)? [Hint: you must use Householder twice]

AB: 1.1. 2.2. 2.4; TB: 4-5; GvL 2.4, 5.4-5 - SVD

AB: 1.1. 2.2. 2.4; TB: 4-5; GvL 2.4, 5.4-5 - SVD

 $\begin{tabular}{c} \hline Theorem \\ For any matrix $A \in \mathbb{R}^{m \times n}$ there exist unitary matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that $$ \end{tabular}$

 $A = U\Sigma V^T$

where Σ is a diagonal matrix with entries $\sigma_{ii} \geq 0$.

 $\sigma_{11} \geq \sigma_{22} \geq \cdots \sigma_{pp} \geq 0$ with $p = \min(n,m)$

 $\begin{array}{l} \blacktriangleright \quad \text{The } \sigma_{ii}\text{'s are the singular values. Notation change } \sigma_{ii} \longrightarrow \sigma_i \\ \hline Proof: \quad \text{Let } \sigma_1 = \|A\|_2 = \max_{x, \|x\|_2 = 1} \|Ax\|_2. \text{ There exists a pair of unit vectors } v_1, u_1 \text{ such that} \end{array}$

 $Av_1 = \sigma_1 u_1$

9-9

 \blacktriangleright Complete v_1 into an orthonormal basis of \mathbb{R}^n

 $V\equiv [v_1,V_2]=n imes n$ unitary

 \blacktriangleright Complete u_1 into an orthonormal basis of \mathbb{R}^m

 $oldsymbol{U}\equiv [u_1,U_2]=m imes m$ unitary

\mathbb{Z}_{14} Define U, V as single Householder reflectors.

> Then, it is easy to show that

$$AV = U imes egin{pmatrix} oldsymbol{\sigma}_1 & oldsymbol{w}^T \ 0 & B \end{pmatrix} o U^T AV = egin{pmatrix} oldsymbol{\sigma}_1 & oldsymbol{w}^T \ 0 & B \end{pmatrix} \equiv A_1$$

9-10

► Observe that

$$\left\|oldsymbol{A}_1\left(oldsymbol{\sigma}_1\ oldsymbol{w}
ight)
ight\|_2 \geq \sigma_1^2 + \|oldsymbol{w}\|^2 = \sqrt{\sigma_1^2 + \|oldsymbol{w}\|^2} \left\|inom{\sigma_1}{w}
ight\|_2$$

9-11

> This shows that w must be zero [why?]

Complete the proof by an induction argument.

9-12

AB: 1.1. 2.2. 2.4; TB: 4-5; GvL 2.4, 5.4-5 - SVD

AB: 1.1. 2.2. 2.4; TB: 4-5; GvL 2.4, 5.4-5 - SVD

The "thin" SVD

Consider the Case-1. It can be rewritten as

$$A = [U_1 U_2] egin{pmatrix} \Sigma_1 \ 0 \end{pmatrix} \, V^T$$

Which gives:

9-13

 $A = U_1 \Sigma_1 \ V^T$

where $oldsymbol{U}_1$ is m imes n (same shape as $oldsymbol{A}$), and Σ_1 and $oldsymbol{V}$ are n imes n

> Referred to as the "thin" SVD. Important in practice.

How can you obtain the thin SVD from the QR factorization of A and the SVD of an $n \times n$ matrix?

9-13

AB: 1.1. 2.2. 2.4; TB: 4-5; GvL 2.4, 5.4-5 – SVD

A few properties. Assume that

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$
 and $\sigma_{r+1} = \cdots = \sigma_p = 0$

Then:

- rank(A) = r = number of nonzero singular values.
- $\operatorname{Ran}(A) = \operatorname{span}\{u_1, u_2, \dots, u_r\}$
- $\operatorname{Null}(A^T) = \operatorname{span}\{u_{r+1}, u_{r+2}, \dots, u_m\}$
- $\operatorname{Ran}(A^T) = \operatorname{span}\{v_1, v_2, \dots, v_r\}$
- $\operatorname{Null}(A) = \operatorname{span}\{v_{r+1}, v_{r+2}, \dots, v_n\}$

Properties of the SVD (continued)

• The matrix **A** admits the SVD expansion:

$$oldsymbol{A} = \sum_{i=1}^r \sigma_i u_i v_i^T$$

• $\|A\|_2 = \sigma_1 =$ largest singular value

• $\|A\|_F = \left(\sum_{i=1}^r \sigma_i^2\right)^{1/2}$

ullet When A is an n imes n nonsingular matrix then $\|A^{-1}\|_2 = 1/\sigma_n$

Theorem Let
$$k < r$$
 and

$$A_k = \sum_{i=1}^\kappa \sigma_i u_i v_i^T$$

9-14

then

$$\min_{rank(B)=k} \|A - B\|_2 = \|A - A_k\|_2 = \sigma_{k+1}$$

AB: 1.1. 2.2. 2.4; TB: 4-5; GvL 2.4, 5.4-5 - SVD

AB: 1.1. 2.2. 2.4; TB: 4-5; GvL 2.4, 5.4-5 - SVD

9-16

9-20