THE URV & SINGULAR VALUE DECOMPOSITIONS

- Orthogonal subspaces;
- Orthogonal projectors; Orthogonal decomposition;
- The URV decomposition
- Introduction to the Singular Value Decomposition
- The SVD existence and properties.

Orthogonal projectors and subspaces

Notation: Given a supspace \mathcal{X} of \mathbb{R}^m define

$$\mathcal{X}^{\perp} = \{ y \mid y \perp x, \hspace{1em} orall \hspace{1em} x \hspace{1em} \in \mathcal{X} \}$$

 \blacktriangleright Let $Q = [q_1, \cdots, q_r]$ an orthonormal basis of $\mathcal X$

How would you obtain such a basis?

> Then define orthogonal projector $P = QQ^T$

Properties

(a) $P^2 = P$ (b) $(I - P)^2 = I - P$ (c) $Ran(P) = \mathcal{X}$ (d) $Null(P) = \mathcal{X}^{\perp}$ (e) $Ran(I - P) = Null(P) = \mathcal{X}^{\perp}$

Note that (b) means that I - P is also a projector AB: 1.1. 2.2. 2.4; TB: 4-5; GvL 2.4, 5.4-5 – SVD

Proof. (a), (b) are trivial

9-3

(c): Clearly $Ran(P) = \{x | x = QQ^Ty, y \in \mathbb{R}^m\} \subseteq \mathcal{X}$. Any $x \in \mathcal{X}$ is of the form $x = Qy, y \in \mathbb{R}^m$. Take $Px = QQ^T(Qy) = Qy = x$. Since x = Px, $x \in Ran(P)$. So $\mathcal{X} \subseteq Ran(P)$. In the end $\mathcal{X} = Ran(P)$.

 $\begin{array}{c|cccc} (d) : & x \in \mathcal{X}^{\perp} \leftrightarrow (x,y) = 0, \forall y \in \mathcal{X} \leftrightarrow (x,Qz) = \\ 0, \forall z \in \mathbb{R}^r \leftrightarrow (Q^T x,z) = 0, \forall z \in \mathbb{R}^r \leftrightarrow Q^T x = 0 \leftrightarrow \\ QQ^T x = 0 \leftrightarrow Px = 0. \end{array}$

(e): Need to show inclusion both ways. • $x \in Null(P) \leftrightarrow Px = 0 \leftrightarrow (I - P)x = x \rightarrow$ $x \in Ran(I - P)$ • $x \in Ran(I - P) \leftrightarrow \exists y \in \mathbb{R}^m | x = (I - P)y \rightarrow$ $Px = P(I - P)y = 0 \rightarrow x \in Null(P)$

AB: 1.1. 2.2. 2.4; TB: 4-5; GvL 2.4, 5.4-5 - SVD

Orthogonal decomposition

9-5

► In other words
$$\mathbb{R}^m = P\mathbb{R}^m \oplus (I - P)\mathbb{R}^m$$
 or:
 $\mathbb{R}^m = Ran(P) \oplus Ran(I - P)$ or:
 $\mathbb{R}^m = Ran(P) \oplus Null(P)$ or:
 $\mathbb{R}^m = Ran(P) \oplus Ran(P)^{\perp}$

Can complete basis $\{q_1, \cdots, q_r\}$ into orthonormal basis of \mathbb{R}^m , q_{r+1}, \cdots, q_m

► $\{q_{r+1}, \cdots, q_m\}$ = basis of \mathcal{X}^{\perp} . \rightarrow $dim(\mathcal{X}^{\perp}) = m - r$.

Four fundamental supspaces - URV decomposition

Let $A \in \mathbb{R}^{m imes n}$ and consider $\operatorname{Ran}(A)^{\perp}$ Property 1: $\operatorname{Ran}(A)^{\perp} = Null(A^T)$

Proof: $x \in \operatorname{Ran}(A)^{\perp}$ iff (Ay, x) = 0 for all y iff $(y, A^T x) = 0$ for all y ...

Property 2:
$$\operatorname{Ran}(A^T) = Null(A)^{\perp}$$

> Take $\mathcal{X} = \operatorname{Ran}(A)$ in orthogonal decomoposition. > Result:

 $\mathbb{R}^m = Ran(A) \oplus Null(A^T)$ $\mathbb{R}^n = Ran(A^T) \oplus Null(A)$ 4 fundamental subspaces Ran(A) $Null(A^T)$ $Ran(A^T)$ Null(A)

AB: 1.1. 2.2. 2.4; TB: 4-5; GvL 2.4, 5.4-5 – SVD

 \blacktriangleright Express the above with bases for \mathbb{R}^m :

$$[\underbrace{u_1, u_2, \cdots, u_r}_{Ran(A)}, \underbrace{u_{r+1}, u_{r+2}, \cdots, u_m}_{Null(A^T)}]$$

and for \mathbb{R}^n $[\underbrace{v_1, v_2, \cdots, v_r}_{Ran(A^T)}, \underbrace{v_{r+1}, v_{r+2}, \cdots, v_n}_{Null(A)}]$
> Observe $u_i^T A v_j = 0$ for $i > r$ or $j > r$. Therefore

$$U^T A V = R = \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix}_{m \times n} \quad C \in \mathbb{R}^{r \times r} \quad \longrightarrow$$

$$A = URV^T$$

AB: 1.1. 2.2. 2.4; TB: 4-5; GvL 2.4, 5.4-5 - SVD

► Far from unique.

9-8

Show how you can get a decomposition in which C is lower (or upper) triangular, from the above factorization.

 \blacktriangleright Can select decomposition so that R is upper triangular \rightarrow URV decomposition.

 \blacktriangleright Can select decomposition so that R is lower triangular \rightarrow ULV decomposition.

> SVD = special case of URV where R = diagonal

How can you get the ULV decomposition by using only the Householder QR factorization (possibly with pivoting)? [Hint: you must use Householder twice]

The Singular Value Decomposition (SVD)

 $\begin{array}{c|c} \hline Theorem & \text{For any matrix } A \in \mathbb{R}^{m \times n} \text{ there exist unitary matrices} \\ \hline U \in \mathbb{R}^{m \times m} \text{ and } V \in \mathbb{R}^{n \times n} \text{ such that} \end{array}$

 $A = U\Sigma V^T$

where Σ is a diagonal matrix with entries $\sigma_{ii} \geq 0$.

$$\sigma_{11} \geq \sigma_{22} \geq \cdots \sigma_{pp} \geq 0$$
 with $p = \min(n,m)$

► The σ_{ii} 's are the singular values. Notation change $\sigma_{ii} \longrightarrow \sigma_i$ **Proof:** Let $\sigma_1 = \|A\|_2 = \max_{x, \|x\|_2 = 1} \|Ax\|_2$. There exists a pair of unit vectors v_1, u_1 such that

$$Av_1 = \sigma_1 u_1$$

AB: 1.1. 2.2. 2.4; TB: 4-5; GvL 2.4, 5.4-5 - SVD

Complete v_1 into an orthonormal basis of \mathbb{R}^n $V \equiv [v_1, V_2] = n imes n$ unitary Complete u_1 into an orthonormal basis of \mathbb{R}^m $U \equiv [u_1, U_2] = m imes m$ unitary Define U, V as single Householder reflectors. Æ114 Then, it is easy to show that $AV = U imes egin{pmatrix} oldsymbol{\sigma}_1 \ oldsymbol{w}^T \ oldsymbol{0} \ B \ egin{pmatrix} oldsymbol{O} & B \ egin{pmatrix} oldsymbol{U}^T AV = egin{pmatrix} oldsymbol{\sigma}_1 \ oldsymbol{w}^T \ oldsymbol{O} \ B \ egin{pmatrix} oldsymbol{B} \ egin{pmatrix} oldsymbol{O} & B \ egin{pmatrix} oldsymbol{O} & B \ egin{pmatrix} oldsymbol{O} & B \ egin{pmatrix} oldsymbol{O} \ B \ egin{pmatrix} oldsymbol{O} \ egin{pmatrix} oldsymbol{O} \ B \ egin{pmatrix} eldsymbol{O} \ B \ eldsymbol{O} \ B \ eldsymbol{O} \ B \ egin{pmatrix} eldsymbol{O} \ B \$

AB: 1.1. 2.2. 2.4; TB: 4-5; GvL 2.4, 5.4-5 - SVD

9-11

$$\left\|A_1\left(egin{smallmatrix} {m \sigma_1} \\ {m w} \end{array}
ight)
ight\|_2 \geq {m \sigma_1^2} + \|{m w}\|^2 = \sqrt{{m \sigma_1^2} + \|{m w}\|^2} \left\|egin{smallmatrix} {m \sigma_1} \\ {m w} \end{matrix}
ight\|_2$$

- \blacktriangleright This shows that w must be zero [why?]
- Complete the proof by an induction argument.

AB: 1.1. 2.2. 2.4; TB: 4-5; GvL 2.4, 5.4-5 - SVD

The "thin" SVD

Consider the Case-1. It can be rewritten as

$$oldsymbol{A} = [oldsymbol{U}_1 oldsymbol{U}_2] egin{pmatrix} oldsymbol{\Sigma}_1 \ 0 \end{pmatrix} oldsymbol{V}^T$$

Which gives:

9-13

$$A = U_1 \Sigma_1 \; V^T$$

where U_1 is m imes n (same shape as A), and Σ_1 and V are n imes n

Referred to as the "thin" SVD. Important in practice.

Mow can you obtain the thin SVD from the QR factorization of A and the SVD of an $n \times n$ matrix?

A few properties. Assume that

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$
 and $\sigma_{r+1} = \cdots = \sigma_p = 0$

Then:

9-14

- rank(A) = r = number of nonzero singular values.
- $\operatorname{Ran}(A) = \operatorname{span}\{u_1, u_2, \dots, u_r\}$
- $\operatorname{Null}(A^T) = \operatorname{span}\{u_{r+1}, u_{r+2}, \ldots, u_m\}$
- $\operatorname{Ran}(A^T) = \operatorname{span}\{v_1, v_2, \dots, v_r\}$
- $\operatorname{Null}(A) = \operatorname{span}\{v_{r+1}, v_{r+2}, \dots, v_n\}$

Properties of the SVD (continued)

• The matrix **A** admits the SVD expansion:

$$oldsymbol{A} = \sum_{i=1}^r oldsymbol{\sigma}_i oldsymbol{u}_i oldsymbol{v}_i^T$$

- $\|A\|_2 = \sigma_1 =$ largest singular value
- $\|A\|_F = \left(\sum_{i=1}^r \sigma_i^2\right)^{1/2}$
- When A is an n imes n nonsingular matrix then $\|A^{-1}\|_2 = 1/\sigma_n$

Theorem Let k < r and

$$A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$$

then

9-16

$$\min_{rank(B)=k} \|A-B\|_2 = \|A-A_k\|_2 = \sigma_{k+1}$$

Proof: First: $||A - B||_2 \ge \sigma_{k+1}$, for any rank-k matrix B. Consider $\mathcal{X} = \operatorname{span}\{v_1, v_2, \cdots, v_{k+1}\}$. Note: $dim(Null(B)) = n - k \rightarrow Null(B) \cap \mathcal{X} \neq \{0\}$ [Why?] Let $x_0 \in Null(B) \cap \mathcal{X}, x_0 \neq 0$. Write $x_0 = Vy$. Then $\| (A-B)x_0 \|_2 = \| Ax_0 \|_2 = \| U \Sigma V^T V y \|_2 = \| \Sigma y \|_2$ But $\|\Sigma y\|_2 \geq \sigma_{k+1} \|x_0\|_2$ (Show this). $\rightarrow \|A - B\|_2 \geq \sigma_{k+1}$

Second: take $B = A_k$. Achieves the min.

9-17

Right and Left Singular vectors:

9-18

$$egin{array}{lll} A v_i &= \sigma_i u_i \ A^T u_j &= \sigma_j v_j \end{array}$$

Consequence A^TAv_i = σ_i²v_i and AA^Tu_i = σ_i²u_i
 Right singular vectors (v_i's) are eigenvectors of A^TA
 Left singular vectors (u_i's) are eigenvectors of AA^T
 Possible to get the SVD from eigenvectors of AA^T and A^TA

 but: difficulties due to non-uniqueness of the SVD

Define the r imes r matrix

9-19

$$\Sigma_1 = ext{diag}(\pmb{\sigma}_1, \dots, \pmb{\sigma}_r)$$

 \blacktriangleright Let $A \in \mathbb{R}^{m \times n}$ and consider $A^T A$ $(\in \mathbb{R}^{n \times n})$:

$$A^TA = V\Sigma^T\Sigma V^T \ o \ A^TA = V \ \underbrace{igg(egin{array}{c} \Sigma_1^2 \ 0 \ 0 \ 0 \ n \ n imes n \ n im$$

> This gives the spectral decomposition of $A^T A$.

> Similarly, U gives the eigenvectors of AA^T .

$$AA^T = oldsymbol{U} \ \underbrace{egin{pmatrix} \Sigma_1^2 & 0 \ 0 & 0 \ m imes m \end{pmatrix}}_{m imes m} oldsymbol{U}^T$$

Important:

 $A^T A = V D_1 V^T$ and $A A^T = U D_2 U^T$ give the SVD factors U, V up to signs!

AB: 1.1. 2.2. 2.4; TB: 4-5; GvL 2.4, 5.4-5 - SVD