
THE URV & SINGULAR VALUE DECOMPOSITIONS

• Orthogonal subspaces;

• Orthogonal projectors; Orthogonal decomposition;

• The URV decomposition

• Introduction to the Singular Value Decomposition

• The SVD – existence and properties.
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Orthogonal projectors and subspaces

Notation: Given a supspace X of Rm define

X⊥ = {y |y ⊥ x, ∀ x ∈ X}

ä Let Q = [q1, · · · , qr] an orthonormal basis of X

-1 How would you obtain such a basis?

ä Then define orthogonal projector P = QQT

Properties

(a) P 2 = P (b) (I − P )2 = I − P
(c) Ran(P ) = X (d) Null(P ) = X⊥
(e) Ran(I − P ) = Null(P ) = X⊥

ä Note that (b) means that I − P is also a projector
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Proof. (a), (b) are trivial

(c): Clearly Ran(P ) = {x| x = QQTy, y ∈ Rm} ⊆ X .
Any x ∈ X is of the form x = Qy, y ∈ Rm. Take Px =
QQT(Qy) = Qy = x. Since x = Px, x ∈ Ran(P ). So
X ⊆ Ran(P ). In the end X = Ran(P ).

(d): x ∈ X⊥ ↔ (x, y) = 0, ∀y ∈ X ↔ (x,Qz) =
0, ∀z ∈ Rr ↔ (QTx, z) = 0, ∀z ∈ Rr ↔ QTx = 0 ↔
QQTx = 0↔ Px = 0.

(e): Need to show inclusion both ways.
• x ∈ Null(P )↔ Px = 0↔ (I − P )x = x→
x ∈ Ran(I − P )
• x ∈ Ran(I − P ) ↔ ∃y ∈ Rm|x = (I − P )y →
Px = P (I − P )y = 0→ x ∈ Null(P )
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Result: Any x ∈ Rm can be written in a unique way as

x = x1 + x2, x1 ∈ X , x2 ∈ X⊥

ä Proof: Just set x1 = Px, x2 = (I − P )x

ä Note: X ∩ X⊥ = {0}

ä Therefore: Rm = X ⊕ X⊥

ä Called the Orthogonal Decomposition
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Orthogonal decomposition

ä In other words Rm = PRm ⊕ (I − P )Rm or:
Rm = Ran(P )⊕Ran(I − P ) or:
Rm = Ran(P )⊕Null(P ) or:
Rm = Ran(P )⊕Ran(P )⊥

ä Can complete basis {q1, · · · , qr} into orthonormal basis of Rm,
qr+1, · · · , qm
ä {qr+1, · · · , qm}= basis ofX⊥. → dim(X⊥) = m− r.
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Four fundamental supspaces - URV decomposition

Let A ∈ Rm×n and consider Ran(A)⊥

Property 1: Ran(A)⊥ = Null(AT)

Proof: x ∈ Ran(A)⊥ iff (Ay, x) = 0 for all y iff (y,ATx) = 0
for all y ...

Property 2: Ran(AT) = Null(A)⊥

ä Take X = Ran(A) in orthogonal decomoposition. ä Result:

Rm = Ran(A)⊕Null(AT)

Rn = Ran(AT)⊕Null(A)

4 fundamental subspaces
Ran(A) Null(AT)
Ran(AT) Null(A)
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ä Express the above with bases for Rm :

[u1, u2, · · · , ur︸ ︷︷ ︸
Ran(A)

, ur+1, ur+2, · · · , um︸ ︷︷ ︸
Null(AT )

]

and for Rn [v1, v2, · · · , vr︸ ︷︷ ︸
Ran(AT )

, vr+1, vr+2, · · · , vn︸ ︷︷ ︸
Null(A)

]

ä Observe uTi Avj = 0 for i > r or j > r. Therefore

UTAV = R =

(
C 0
0 0

)
m×n

C ∈ Rr×r −→

A = URV T

ä General class of URV decompositions
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ä Far from unique.

-2 Show how you can get a decomposition in which C is lower (or
upper) triangular, from the above factorization.

ä Can select decomposition so that R is upper triangular→ URV
decomposition.

ä Can select decomposition so that R is lower triangular→ ULV
decomposition.

ä SVD = special case of URV where R = diagonal

-3 How can you get the ULV decomposition by using only the
Householder QR factorization (possibly with pivoting)? [Hint: you
must use Householder twice]
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The Singular Value Decomposition (SVD)

Theorem For any matrixA ∈ Rm×n there exist unitary matrices

U ∈ Rm×m and V ∈ Rn×n such that

A = UΣV T

where Σ is a diagonal matrix with entries σii ≥ 0.

σ11 ≥ σ22 ≥ · · ·σpp ≥ 0 with p = min(n,m)

ä The σii’s are the singular values. Notation change σii −→ σi

Proof: Let σ1 = ‖A‖2 = maxx,‖x‖2=1 ‖Ax‖2. There exists

a pair of unit vectors v1, u1 such that

Av1 = σ1u1
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ä Complete v1 into an orthonormal basis of Rn

V ≡ [v1, V2] = n× n unitary

ä Complete u1 into an orthonormal basis of Rm

U ≡ [u1, U2] = m×m unitary

-4 Define U, V as single Householder reflectors.

ä Then, it is easy to show that

AV = U ×
(
σ1 w

T

0 B

)
→ UTAV =

(
σ1 w

T

0 B

)
≡ A1
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ä Observe that∥∥∥A1

(σ1

w

)∥∥∥
2
≥ σ2

1 + ‖w‖2 =

√
σ2

1 + ‖w‖2

∥∥∥(σ1

w

)∥∥∥
2

ä This shows that w must be zero [why?]

ä Complete the proof by an induction argument.
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Case 1:

=

V

UA

T

Σ

Case 2:

A U Σ

V

=

T
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The “thin” SVD

ä Consider the Case-1. It can be rewritten as

A = [U1U2]

(
Σ1

0

)
V T

Which gives:

A = U1Σ1 V
T

where U1 is m×n (same shape as A), and Σ1 and V are n×n

ä Referred to as the “thin” SVD. Important in practice.

-5 How can you obtain the thin SVD from the QR factorization of
A and the SVD of an n× n matrix?
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A few properties. Assume that

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σp = 0

Then:

• rank(A) = r = number of nonzero singular values.

• Ran(A) = span{u1, u2, . . . , ur}

• Null(AT) = span{ur+1, ur+2, . . . , um}

• Ran(AT) = span{v1, v2, . . . , vr}

• Null(A) = span{vr+1, vr+2, . . . , vn}
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Properties of the SVD (continued)

• The matrix A admits the SVD expansion:

A =

r∑
i=1

σiuiv
T
i

• ‖A‖2 = σ1 = largest singular value

• ‖A‖F =
(∑r

i=1 σ
2
i

)1/2

• When A is an n×n nonsingular matrix then ‖A−1‖2 = 1/σn
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Theorem Let k < r and

Ak =

k∑
i=1

σiuiv
T
i

then

min
rank(B)=k

‖A−B‖2 = ‖A−Ak‖2 = σk+1
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Proof: First: ‖A−B‖2 ≥ σk+1, for any rank-k matrix B.

Consider X = span{v1, v2, · · · , vk+1}. Note:

dim(Null(B)) = n− k→ Null(B) ∩ X 6= {0}

[Why?]

Let x0 ∈ Null(B) ∩ X , x0 6= 0. Write x0 = V y. Then

‖(A−B)x0‖2 = ‖Ax0‖2 = ‖UΣV TV y‖2 = ‖Σy‖2

But ‖Σy‖2 ≥ σk+1‖x0‖2 (Show this). → ‖A−B‖2 ≥ σk+1

Second: take B = Ak. Achieves the min.
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Right and Left Singular vectors:

Avi = σiui
ATuj = σjvj

ä Consequence ATAvi = σ2
ivi and AATui = σ2

iui

ä Right singular vectors (vi’s) are eigenvectors of ATA

ä Left singular vectors (ui’s) are eigenvectors of AAT

ä Possible to get the SVD from eigenvectors of AAT and ATA
– but: difficulties due to non-uniqueness of the SVD
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Define the r × r matrix

Σ1 = diag(σ1, . . . , σr)

ä Let A ∈ Rm×n and consider ATA (∈ Rn×n):

ATA = V ΣTΣV T → ATA = V

(
Σ2

1 0
0 0

)
︸ ︷︷ ︸

n×n

V T

ä This gives the spectral decomposition of ATA.
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ä Similarly, U gives the eigenvectors of AAT .

AAT = U

(
Σ2

1 0
0 0

)
︸ ︷︷ ︸
m×m

UT

Important:

ATA = V D1V
T and AAT = UD2U

T give the SVD factors
U, V up to signs!
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