

Alternative:

- \blacktriangleright Define $\sigma = \sum_{i=2}^{m} \xi_i^2$.
- \blacktriangleright Always set $\hat{\xi}_1 = \xi_1 \|x\|_2$. Update OK when $\xi_1 \leq 0$
- \blacktriangleright When $\xi_1 > 0$ compute \hat{x}_1 as

$$\hat{\xi}_1 = \xi_1 - \|x\|_2 = rac{\xi_1^2 - \|x\|_2^2}{\xi_1 + \|x\|_2} = rac{-\sigma}{\xi_1 + \|x\|_2}$$

So:
$$\hat{\xi}_1 = \begin{cases} rac{-\sigma}{\xi_1 + \|x\|_2} & ext{if } \xi_1 > 0 \\ \xi_1 - \|x\|_2 & ext{if } \xi_1 \le 0 \end{cases}$$

> It is customary to compute a vector v such that $v_1 = 1$. So v is scaled by its first component.

8-5

 \blacktriangleright If $\sigma == 0$, wll get v = [1; x(2:m)] and $\beta = 0$.

TB: 10,19; AB: 2.3.3;GvL 5.1 – HouQR

Problem 2: Generalization.

Want to transform x into y = Px where first k components of x and y are the same and $y_j = 0$ for j > k + 1. In other words:

$$\begin{array}{c} \hline \textbf{Problem 2:} & \text{Given } x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, x_1 \in \mathbb{R}^k, x_2 \in \mathbb{R}^{m-k}, \\ \text{find: Householder transform } P = I - 2ww^T \text{ such that:} \\ Px = \begin{pmatrix} x_1 \\ \alpha e_1 \end{pmatrix} \text{ where } e_1 \in \mathbb{R}^{m-k}. \end{array}$$

Solution
$$w = \begin{pmatrix} 0 \\ \hat{w} \end{pmatrix}$$
, where \hat{w} is s.t. $(I - 2\hat{w}\hat{w}^T)x_2 = \alpha e_1$

8-7

This is because:

 $0 I - 2 \hat{w} \hat{w}^T$

Matlab function:

```
function [v,bet] = house (x)
%% computes the householder vector for x
m = length(x);
v = [1; x(2:m)];
sigma = v(2:m)' * v(2:m);
if(sigma == 0)
   bet = 0:
else
   xnrm = sqrt(x(1)^2 + sigma);
   if (x(1) <= 0)
      v(1) = x(1) - xnrm;
   else
      v(1) = -sigma / (x(1) + xnrm);
   end
   bet = 2 / (1 + \text{sigma}/v(1)^2);
   v = v/v(1);
end
```

Overall Procedure:

Given an m imes n matrix X, find w_1, w_2, \dots, w_n such that $(I-2w_nw_n^T)\cdots(I-2w_2w_2^T)(I-2w_1w_1^T)X=R$ where $r_{ij}=0$ for i>j

8-6

 \blacktriangleright First step is easy : select w_1 so that the first column of X becomes $lpha e_1$

> Second step: select w_2 so that x_2 has zeros below 2nd component.

▶ etc.. After k-1 steps: $X_k \equiv P_{k-1} \dots P_1 X$ has the following shape:

8-8

TB: 10,19; AB: 2.3.3;GvL 5.1 - HouQR

8-15

8-16

Answer: simply use the partitioning

$$X = ig(oldsymbol{Q}_1 \, oldsymbol{Q}_2 ig) ig(oldsymbol{R}_1 ig) ext{ } o ext{ } X = oldsymbol{Q}_1 oldsymbol{R}_1$$

Referred to as the "thin" QR factorization (or "economy-size QR" factorization in matlab)

- > How to solve a least-squares problem Ax = b using the Householder factorization?
- > Answer: no need to compute Q_1 . Just apply Q^T to b.
- > This entails applying the successive Householder reflections to b

8-17

The rank-deficient case

> Result of Householder QR: Q_1 and R_1 such that $Q_1R_1 = X$. In the rank-deficient case, can have $\operatorname{span}\{Q_1\} \neq \operatorname{span}\{X\}$ because R_1 may be singular.

> Remedy: Householder QR with column pivoting. Result will be:

$$A\Pi = Q \begin{pmatrix} R_{11} & R_{12} \\ 0 & 0 \end{pmatrix}$$

 \succ R_{11} is nonsingular. So rank(X) = size of R_{11} = rank (Q_1) and Q_1 and X span the same subspace.

8-18

> Π permutes columns of X.

TB: 10,19; AB: 2.3.3;GvL 5.1 - HouQR

Algorithm: At step k, active matrix is X(k:m,k:n). Swap k-th column with column of largest 2-norm in X(k:m,k:n). If all the columns have zero norm, stop.

8-19

Practical Question: How to implement this ???

Suppose you know the norms of each column of X at the start. What happens to each of the norms of X(2:m,j) for $j = 2, \dots, n$? Generalize this to step k and obtain a procedure to inexpensively compute the desired norms at each step.

8-17

TB: 10,19; AB: 2.3.3;GvL 5.1 - HouQR

TB: 10,19; AB: 2.3.3;GvL 5.1 - HouQR

Properties of the QR factorization

Consider the 'thin' factorization A = QR, (size(Q) = [m,n] = size (A)). Assume $r_{ii} > 0$, $i = 1, \ldots, n$

1. When \boldsymbol{A} is of full column rank this factorization exists and is unique

2. It satisfies:

8-21

 $\operatorname{span}\{a_1,\cdots,a_k\}=\operatorname{span}\{q_1,\cdots,q_k\},\ \ k=1,\ldots,n$

3. R is identical with the Cholesky factor G^T of $A^T A$.

▶ When *A* in rank-deficient and Householder with pivoting is used, then

 $Ran\{Q_1\} = Ran\{A\}$

8-21

Givens Rotations

Matrices of the form

8-22

TB: 10,19; AB: 2.3.3;GvL 5.1 - HouQR

with $c = \cos heta$ and $s = \sin heta$

> represents a rotation in the span of e_i and e_k .

Main idea of Givens rotations	consider $oldsymbol{y}=Gx$ then
$y_i = c * x_i + s * x_k$	
$y_k = -s \ast x_i + c \ast x_k$	
$y_j = x_j$ for $j eq i,k$	

 \blacktriangleright Can make $y_k = 0$ by selecting

 $s=x_k/t; \hspace{0.3cm} c=x_i/t; \hspace{0.3cm} t=\sqrt{x_i^2+x_k^2}$

This is used to introduce zeros in the first column of a matrix A (for example G(m-1,m), G(m-2,m-1) etc..G(1,2))...

8-23

TB: 10,19; AB: 2.3.3;GvL 5.1 – HouQR

TB: 10,19; AB: 2.3.3;GvL 5.1 – HouQR

8-23