Least-Squares Systems and The QR factorization

• Orthogonality

- Least-squares systems.
- The Gram-Schmidt and Modified Gram-Schmidt processes.
- The Householder QR and the Givens QR.

## Orthogonality

- 1. Two vectors u and v are orthogonal if (u, v) = 0.
- 2. A system of vectors  $\{v_1, \ldots, v_n\}$  is orthogonal if  $(v_i, v_j) = 0$ for  $i \neq j$ ; and orthonormal if  $(v_i, v_j) = \delta_{ij}$

3. A matrix is orthogonal if its columns are orthonormal

Notation:  $V = [v_1, \dots, v_n] ==$  matrix with column-vectors  $v_1, \dots, v_n$ .

> Orthogonality is essential in understanding and solving least-squares problems.

 $Least-Squares\ systems$ 

For Given: an  $m \times n$  matrix n < m. Problem: find x which minimizes:

7-1

 $\|b-Ax\|_2$ 

## Good illustration: Data fitting.

Typical problem of data fitting: We seek an unknwon function as a linear combination  $\phi$  of n known functions  $\phi_i$  (e.g. polynomials, trig. functions). Experimental data (not accurate) provides measures  $\beta_1, \ldots, \beta_m$  of this unknown function at points  $t_1, \ldots, t_m$ . Problem: find the 'best' possible approximation  $\phi$  to this data.

 $\phi(t) = \sum_{i=1}^n \xi_i \phi_i(t)$  , s.t.  $\phi(t_j) pprox eta_j, j = 1, \dots, m$ 

7-3

TB: 7,8,11,19; AB: 2.1, 2.3.4, ;GvL 5, 5.3 - QR

Question: Close in what sense?

Least-squares approximation: Find \u03c6 such that

 $\phi(t) = \sum_{i=1}^n m{\xi}_i \phi_i(t)$ , &  $\sum_{j=1}^m |\phi(t_j) - m{eta}_j|^2 = {\sf Min}$ 

7-2

> In linear algebra terms: find 'best' approximation to a vector b from linear combinations of vectors  $f_i$ ,  $i = 1, \ldots, n$ , where

$$egin{aligned} b = egin{pmatrix} eta_1 \ eta_2 \ dots \ eta_m \end{pmatrix}, & f_i = egin{pmatrix} \phi_i(t_1) \ \phi_i(t_2) \ dots \ \phi_i(t_m) \end{pmatrix} \end{aligned}$$

7-4

TB: 7,8,11,19; AB: 2.1, 2.3.4, ;GvL 5, 5.3 - QR

 $\blacktriangleright$  We want to find  $x = \{\xi_i\}_{i=1,...,n}$  such that

$$\left\|\sum_{i=1}^n \xi_i f_i - b 
ight\|_2$$
 Minimum

Define

$$F = [f_1, f_2, \dots, f_n], \hspace{1em} x = egin{pmatrix} oldsymbol{\xi_1} \ dots \ oldsymbol{\xi_n} \ oldsy$$

> We want to find x to minimize  $\|b - Fx\|_2$ 

> This is a Least-squares linear system: F is  $m \times n$ , with  $m \ge n$ .

Formulate the least-squares system for the problem of finding the polynomial of degree 2 that approximates a function f which satisfies f(-1) = -1; f(0) = 1; f(1) = 2; f(2) = 0

Solution:  $\phi_1(t) = 1; \quad \phi_2(t) = t; \quad \phi_2(t) = t^2;$ 

• Evaluate the  $\phi_i$ 's at points  $t_1=-1; t_2=0; t_3=1; t_4=2$ :

$$f_1=egin{pmatrix} 1\ 1\ 1\ 1\end{pmatrix}$$
  $f_2=egin{pmatrix} -1\ 0\ 1\ 2\end{pmatrix}$   $f_3=egin{pmatrix} 1\ 0\ 1\ 4\end{pmatrix}$   $ightarrow$ 

> So the coefficients  $\xi_1, \xi_2, \xi_3$  of the polynomial  $\xi_1 + \xi_2 t + \xi_3 t^2$ are the solution of the least-squares problem min ||b - Fx|| where:

$$F=egin{pmatrix} 1\ -1\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 2\ 0\ \end{pmatrix} \quad b=egin{pmatrix} -1\ 1\ 2\ 0\ \end{pmatrix}$$

THEOREM. The vector  $x_*$  mininizes  $\psi(x) = ||b - Fx||_2^2$  if and only if it is the solution of the normal equations:

 $F^T F x = F^T b$ 

*Proof:* Expand out the formula for  $\psi(x_* + \delta x)$ :

 $egin{aligned} \psi(x_*+\delta x) &= ((b-Fx_*)-F\delta x)^T((b-Fx_*)-F\delta x) \ &= \psi(x_*)-2(F\delta x)^T(b-Fx_*)+(F\delta x)^T(F\delta x) \ &= \psi(x_*)-2(\delta x)^T \underbrace{\left[F^T(b-Fx_*)
ight]}_{abla_x\psi} + \underbrace{(F\delta x)^T(F\delta x)}_{ ext{always positive}} \end{aligned}$ 

Can see that  $\psi(x_* + \delta x) \ge \psi(x_*)$  for any  $\delta x$ , iff the boxed quantity [the gradient vector] is zero. Q.E.D.



**Illustration of theorem:**  $x^*$  is the best approximation to the vector b from the subspace span $\{F\}$  if and only if  $b - Fx^*$  is  $\bot$  to the whole subspace span $\{F\}$ . This in turn is equivalent to  $F^T(b - Fx^*) = 0 \triangleright$  Normal equations.



- 2) Approximation by polynomials of degree 2:
- $\blacktriangleright \phi_1(t) = 1, \phi_2(t) = t, \phi_3(t) = t^2.$
- Best polynomial found:

7-11

 $0.3085714285 - 0.06 \times t - 0.2571428571 \times t^2$ 



1) Approximations by polynomials of degree one:

$$\blacktriangleright \ \phi_1(t) = 1, \phi_2(t) = t$$

$$F = egin{pmatrix} 1.0 & -1.0 \ 1.0 & -0.5 \ 1.0 & 0 \ 1.0 & 0.5 \ 1.0 & 1.0 \ \end{pmatrix} \qquad egin{pmatrix} F^T F = egin{pmatrix} 5.0 & 0 \ 0 & 2.8 \ 0 & 2.8 \ -0.15 \ \end{pmatrix} \ F^T b = egin{pmatrix} 0.9 \ -0.15 \ -0.15 \ \end{pmatrix}$$



## Problem with Normal Equations

Condition number is high: if A is square and non-singular, then

 $\kappa_2(A) = \|A\|_2 \cdot \|A^{-1}\|_2 = \sigma_{\max} / \sigma_{\min}$  $\kappa_2(A^TA) = \|A^TA\|_2 \cdot \|(A^TA)^{-1}\|_2 = (\sigma_{\max}/\sigma_{\min})^2$ 

- > Example: Let  $A = \begin{pmatrix} 1 & 1 & -\epsilon \\ \epsilon & 0 & 1 \\ 0 & \epsilon & 1 \end{pmatrix}$ .
- > Then  $\kappa(A) \approx \sqrt{2}/\epsilon$ , but  $\kappa(A^T A) \approx 2\epsilon^{-2}$ .
- $\succ fl(A^T A) = fl\begin{pmatrix} 2+\epsilon^2 & 1 & 0\\ 1 & 1+\epsilon^2 & 0\\ 0 & 0 & 1+\epsilon^2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0\\ 1 & 1 & 0\\ 0 & 0 & 2 \end{pmatrix}$ is singular to working precision (if  $\epsilon < u$ )



## > Better algorithm: Modified Gram-Schmidt.

| ALGORITHM : 2. Modified Gram-Schmidt<br>1. For $j = 1,, n$ Do:<br>2. Define $\hat{q} := x_j$<br>3. For $i = 1,, j - 1$ , Do:<br>4. $r_{ij} := (\hat{q}, q_i)$<br>5. $\hat{q} := \hat{q} - r_{ij}q_i$<br>6. EndDo<br>7. Compute $r_{jj} :=   \hat{q}  _2$ ,<br>8. If $r_{jj} = 0$ then Stop, else $q_j := \hat{q}/r_{jj}$<br>9. EndDo                                                                                                                                                       | $\hat{q} := ORTH(\hat{q}, q_i)$ where $ORTH(x, q)$ denotes the operation of orthogonalizing a vector $x$ against a unit vector $q$ . $\sum_{i=1}^{N} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{i=1}^{N} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{i=1}^{N} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{i=1}^{N} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{i=1}^{N} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_{\substack{i=1, \dots, n \\ i \in X, q \in Q}} \sum_$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Only difference: inner product uses the accumulated subsum instead of original $\hat{q}$<br>TB: 7,8,11,19; AB: 2.1, 2.3.4, ;GvL 5, 5.3 – QR<br>7-17                                                                                                                                                                                                                                                                                                                                        | Result of $z = ORTH(x, q)$<br>TB: 7,8,11,19; AB: 2.1, 2.3.4, ;GvL 5, 5.3 – QR<br>7-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| • Modified Gram-Schmidt algorithm is much more stable than classical Gram-Schmidt in general. [A few examples easily show this].<br>Suppose MGS is applied to $A$ yielding computed matrices $\hat{Q}$ and                                                                                                                                                                                                                                                                                 | An equivalent version:<br>$ALGORITHM : 3 Modified Gram-Schmidt - 2 - 0. Set \hat{Q} := X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\hat{R}$ . Then there are constants $c_i$ (depending on $(m, n)$ ) such that<br>$A + E_1 = \hat{Q}\hat{R}  \ E_1\ _2 \leq c_1 \underline{\mathrm{u}} \ \ A\ _2$<br>$\ \hat{Q}^T\hat{Q} - I\ _2 \leq c_2 \underline{\mathrm{u}} \ \kappa_2(A) + O((\underline{\mathrm{u}} \kappa_2(A))^2)$<br>for a certain perturbation matrix $E_1$ , and there exists an orthonor-<br>mal matrix $Q$ such that<br>$A + E_2 = Q\hat{R}  \ E_2(:, j)\ _2 \leq c_3 \underline{\mathrm{u}} \ \ A(:, j)\ _2$ | 1. For $i = 1,, n$ Do:<br>2. Compute $r_{ii} :=   \hat{q}_i  _2$ ,<br>3. If $r_{ii} = 0$ then Stop, else $q_i := \hat{q}_i/r_{ii}$<br>4. For $j = i + 1,, n$ , Do:<br>5. $r_{ij} := (\hat{q}_j, q_i)$<br>6. $\hat{q}_j := \hat{q}_j - r_{ij}q_i$<br>7. EndDo<br>8. EndDo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $A + E_2 = QR$ $  E_2(:, j)  _2 \ge c_3 \underline{u}   A(:, j)  _2$<br>for a certain perturbation matrix $E_2$ .                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

7-20

The operations in lines 4 and 5 can be written as

7-20



| Use of the QR factorizationProblem: $Ax \approx b$ in least-squares senseA is an $m \times n$ (full-rank) matrix. Let $A = QR$ the QR factorization of $A$ and consider the normal equations: $A^T Ax = A^T b \rightarrow R^T Q^T Q Rx = R^T Q^T b \rightarrow R^T Rx = R^T Q^T b \rightarrow Rx = Q^T b$ ( $R^T$ is an $n \times n$ nonsingular matrix). Therefore, | Another derivation:> Recall: span(Q) = span(A)> So $  b - Ax  _2$ is minimum when $b - Ax \perp$ span $\{Q\}$ > Therefore solution x must satisfy $Q^T(b - Ax) = 0 \rightarrow Q^T(b - QRx) = 0 \rightarrow Rx = Q^Tb$ $x = R^{-1}Q^Tb$                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $x = R^{-1}Q^Tb$<br>7-25 TB: 7,8,11,19; AB: 2.1, 2.3.4, ;GvL 5, 5.3 – QR                                                                                                                                                                                                                                                                                             | 7-26 TB: 7,8,11,19; AB: 2.1, 2.3.4, ;GvL 5, 5.3 – QR<br>7-26                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>➤ Also observe that for any vector w<br/><math>w = QQ^Tw + (I - QQ^T)w</math>         and that <math>w = QQ^Tw \perp (I - QQ^T)w \rightarrow</math><br/>&gt; Pythagoras theorem →         <math>  w  _2^2 =   QQ^Tw  _2^2 +   (I - QQ^T)w  _2^2</math> </li> </ul>                                                                                          | <ul> <li>Method:</li> <li>Compute the QR factorization of A, A = QR.</li> <li>Compute the right-hand side f = Q<sup>T</sup>b</li> <li>Solve the upper triangular system Rx = f.</li> <li>x is the least-squares solution</li> <li>As a rule it is not a good idea to form A<sup>T</sup>A and solve the normal equations. Methods using the QR factorization are better.</li> </ul> |
| $egin{aligned} \ b-Ax\ ^2 &= \ b-QRx\ ^2 \ &= \ (I-QQ^T)b+Q(Q^Tb-Rx)\ ^2 \ &= \ (I-QQ^T)b\ ^2+\ Q(Q^Tb-Rx)\ ^2 \ &= \ (I-QQ^T)b\ ^2+\ Q^Tb-Rx\ ^2 \end{aligned}$                                                                                                                                                                                                     | <ul> <li>Total cost?? (depends on the algorithm used to get the QR decomposition).</li> <li>Using matlab find the parabola that fits the data in previous data fitting example (p. 8-10) in L.S. sense [verify that the result found is correct.]</li> </ul>                                                                                                                       |

7-28

> Min is reached when 2nd term of r.h.s. is zero.

7-27

TB: 7,8,11,19; AB: 2.1, 2.3.4, ;GvL 5, 5.3 – QR