ERROR AND SENSITIVTY ANALYSIS FOR SYSTEMS

OF LINEAR EQUATIONS

- Conditioning of linear systems.
- Estimating errors for solutions of linear systems
- (Normwise) Backward error analysis
- Estimating condition numbers ..

Perturbation analysis for linear systems (Ax = b)

Question addressed by perturbation analysis: determine the variation of the solution x when the data, namely A and b, undergoes small variations. Problem is Ill-conditioned if small variations in data cause very large variation in the solution.

Setting:

> We perturb A into A + E and b into $b + e_b$. Can we bound the resulting change (perturbation) to the solution?

Preparation: We begin with a lemma for a simple case

> Can generalize result:

LEMMA: If A is nonsingular and $||A^{-1}|| ||E|| < 1$ then A + E is non-singular and

 $\|(A+E)^{-1}\| \leq rac{\|A^{-1}\|}{1-\|A^{-1}\|} \, \|E\|$

> Proof is based on relation $A + E = A(I + A^{-1}E)$ and use of previous lemma.

> Now we can prove the main theorem:

THEOREM 1: Assume that $(A + E)y = b + e_b$ and Ax = b and that $||A^{-1}|| ||E|| < 1$. Then A + E is nonsingular and

 $\frac{\|x-y\|}{\|x\|} \le \frac{\|A^{-1}\| \|A\|}{1-\|A^{-1}\| \|E\|} \left(\frac{\|E\|}{\|A\|} + \frac{\|e_b\|}{\|b\|}\right)$

5-5

The quantity $\kappa(A) = ||A|| ||A^{-1}|||$ is called the condition number of the linear system with respect to the norm $|| \cdot ||$. When using the *p*-norms we write:

 $\kappa_p(A) = \|A\|_p \|A^{-1}\|_p$

Note: $\kappa_2(A) = \sigma_{max}(A) / \sigma_{min}(A)$ = ratio of largest to smallest singular values of A. Allows to define $\kappa_2(A)$ when A is not square.

Determinant *is not* a good indication of sensitivity

Small eigenvalues *do not* always give a good indication of poor conditioning.

5-7

Proof: From $(A + E)y = b + e_b$ and Ax = b we get $(A + E)(y - x) = e_b - Ex$. Hence:

$$y - x = (A + E)^{-1}(e_b - Ex)$$

Taking norms $\rightarrow \|y - x\| \le \|(A + E)^{-1}\| [\|e_b\| + \|E\|\|x\|]$ Dividing by $\|x\|$ and using result of lemma

$$egin{aligned} & \|y-x\| \ & \|\|x\| \ & \leq \||(A+E)^{-1}\|\, [\|e_b\|/\|x\|+\|E\|] \ & \leq rac{\|A^{-1}\|}{1-\|A^{-1}\|\|E\|}\, [\|e_b\|/\|x\|+\|E\|] \ & \leq rac{\|A^{-1}\|\|A\|}{1-\|A^{-1}\|\|E\|}\, iggl[rac{\|e_b\|}{\|A\|\|x\|}+rac{\|E\|}{\|A\|} iggr] \end{aligned}$$

Result follows by using inequality $||A|| ||x|| \ge ||b|| \dots$ QED

5-6

TB: 12; AB: 1.2.7; GvL 3.5 - PertA

Example: Consider, for a large α , the $n \times n$ matrix

$$A = I + \alpha e_1 e_n^T$$

► Inverse of A is : $A^{-1} = I - \alpha e_1 e_n^T$ ► For the ∞-norm we have

 $\|A\|_{\infty} = \|A^{-1}\|_{\infty} = 1 + |lpha|$ $\kappa_{\infty}(A) = (1 + |lpha|)^2.$

so that

> Can give a very large condition number for a large α – but all the eigenvalues of A are equal to one.

5-8

TB: 12; AB: 1.2.7; GvL 3.5 – PertA

TB: 12; AB: 1.2.7; GvL 3.5 – PertA

5-12

Normwise backward error in just A or b

Suppose we model entire perturbation in RHS b.

- Let r = b Ay be the residual. Then y satisfies $Ay = b + \Delta b$ with $\Delta b = -r$ exactly.
- > The relative perturbation to the RHS is $\frac{||r||}{||b||}$.

Suppose we model entire perturbation in matrix A.

- ► Then y satisfies $\left(A + \frac{ry^T}{y^Ty}\right)y = b$
- > The relative perturbation to the matrix is

 $\left\| rac{ry^T}{y^T y}
ight\|_2 / \|A\|_2 = rac{\|r\|_2}{\|A\| \|y\|_2}$

Normwise backward error in both A \mathfrak{G} b

For a given y and given perturbation directions E, e_b , we define the Normwise backward error:

	$egin{aligned} \eta_{E,e_b}(y) &= \min\{\epsilon \mid (A+\Delta A)y = b+\Delta b; \ ext{where } \Delta A, \Delta b \ ext{ satisfy: } & \ \Delta A\ \leq \epsilon \ E\ ; \ ext{ and } & \ \Delta b\ \leq \epsilon \ e_b\ \end{aligned}$
In	other words $\eta_{E,e_b}(y)$ is the smallest ϵ for which $(1) egin{cases} (A+\Delta A)y=b+\Delta b;\ \ \Delta A\ \leq \epsilon\ E\ ;\ \ \Delta b\ \leq \epsilon\ e_b\ \end{cases}$

> y is given (a computed solution). E and e_b to be selected (most likely 'directions of perturbation for A and b').

5-13

> Typical choice: E = A, $e_b = b$

Explain why this is not unreasonable

Let r = b - Ay. Then we have:

THEOREM 3: $\eta_{E,e_b}(y) = rac{\|r\|}{\|E\|\|y\|+\|e_b\|}$

Normwise backward error is for case $E = A, e_b = b$:

$$\eta_{A,b}(y) = rac{\|r\|}{\|A\| \|y\| + \|b\|}$$

5 - 15

Show how this can be used in practice as a means to stop some iterative method which computes a sequence of approximate solutions to Ax = b.

5-14

Consider the 6×6 Vandermonde system Ax = b where $a_{ij} = j^{2(i-1)}$, $b = A * [1, 1, \cdots, 1]^T$. We perturb A by E, with $|E| \leq 10^{-10} |A|$ and b similarly and solve the system. Evaluate the backward error for this case. Evaluate the forward bound provided by Theorem 2. Comment on the results.

TB: 12; AB: 1.2.7; GvL 3.5 - PertA

TB: 12; AB: 1.2.7; GvL 3.5 - PertA

5-16

Estimating condition numbers.

Often we just want to get a lower bound for condition number [it is 'worse than ...']

- > We want to estimate $||A|| ||A^{-1}||$.
- > The norm ||A|| is usually easy to compute but $||A^{-1}||$ is not.
- \blacktriangleright We want: Avoid the expense of computing A^{-1} explicitly.

Idea:

- > Select a vector v so that ||v|| = 1 but $||Av|| = \tau$ is small.
- > Then: $||A^{-1}|| \ge 1/\tau$ (show why) and:

5-19

 \succ Condition number worse than $\|A\|/ au$.

> Typical choice for v: choose $[\cdots \pm 1 \cdots]$ with signs chosen on the fly during back-substitution to maximize the next entry in the solution, based on the upper triangular factor from Gaussian Elimination.

Similar techniques used to estimate condition numbers of large matrices in matlab.

5-17 TB: 12; AB: 1.2.8 ;GvL 3.5; Ort 9.3-4 – PertBshort	5-18 TB: 12; AB: 1.2.8 ;GvL 3.5; Ort 9.3-4 – PertBshort
5-17	5-18
Condition numbers and near-singularity	Example:
$\blacktriangleright \ 1/\kappa pprox$ relative distance to nearest singular matrix.	let $m{A}=egin{pmatrix} 1 & 1 \ 1 & 0.99 \end{pmatrix}$ and $m{B}=egin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix}$
Let A,B be two $n imes n$ matrices with A nonsingular and B singular. Then $rac{1}{\kappa(A)} \leq rac{\ A-B\ }{\ A\ }$	Then $\frac{1}{\kappa_1(A)} \leq \frac{0.01}{2} \succ \kappa_1(A) \geq \frac{2}{0.01} = 200.$ \blacktriangleright It can be shown that (Kahan)
oof: B singular $ ightarrow \exists \ x eq 0$ such that $Bx = 0$.	$rac{1}{\kappa(A)} = \min_B \; \left\{ rac{\ A-B\ }{\ A\ } \; \mid \; \det(B) = 0 ight\}$
$egin{aligned} x \ &= \ A^{-1}Ax\ \leq \ A^{-1}\ \ \ Ax\ = \ \ A^{-1}\ \ (A-B)x\ \ &\leq \ A^{-1}\ \ \ A-B\ \ x\ \end{aligned}$	
Divide both sides by $\ x\ imes\kappa(A)=\ x\ \ A\ \ A^{-1}\ ightarrow$ result. QED.	

5-20

Estimating errors from residual norms

Let \tilde{x} an approximate solution to system Ax = b (e.g., computed from an iterative process). We can compute the residual norm:

 $\|r\| = \|b - A ilde{x}\|$

Question: How to estimate the error $\|x - \tilde{x}\|$ from $\|r\|$?

> One option is to use the inequality

 $rac{\|x- ilde{x}\|}{\|x\|} \leq \kappa(A) \ rac{\|r\|}{\|b\|}.$

> We must have an estimate of $\kappa(A)$.

Proof of inequality.

First, note that $A(x- ilde{x})=b-A ilde{x}=r$. So:

$$\|x - ilde{x}\| = \|A^{-1}r\| \le \|A^{-1}\| \; \|r\|$$

Also note that from the relation b = Ax, we get

$$\|b\|=\|Ax\|\leq \|A\|\;\|x\|\quad o \quad \|x\|\geq rac{\|b\|}{\|A\|}$$

Therefore,

$$rac{\|x- ilde{x}\|}{\|x\|} \leq rac{\|A^{-1}\| \ \|r\|}{\|b\|/\|A\|} \ = \ \kappa(A) rac{\|r\|}{\|b\|} \qquad \square$$

▲ Show that

			$\frac{\ x-\tilde{x}\ }{\ x\ } \geq \frac{1}{\kappa(A)} \frac{\ r\ }{\ b\ }.$
5-21	TB: 12; AB: 1.2.8 ;GvL 3.5; Ort 9.3-4 – PertBshort	5-22	TB: 12; AB: 1.2.8 ;GvL 3.5; Ort 9.3-4 – PertBshort
	5-21		5-22