FLOATING POINT ARITHMETHIC - ERROR ANALYSIS

- Brief review of floating point arithmetic
- Model of floating point arithmetic
- Notation, backward and forward errors

Roundoff errors and floating-point arithmetic

The basic problem: The set A of all possible representable numbers on a given machine is finite - but we would like to use this set to perform standard arithmetic operations (+,*,-,/) on an infinite set. The usual algebra rules are no longer satisfied since results of operations are rounded.

Basic algebra breaks down in floating point arithmetic.

Example: In floating point arithmetic.

a + (b + c)! = (a + b) + c

Matlab experiment: For 10,000 random numbers find number of instances when the above is true. Same thing for the multiplication..

4-2

TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 - Float

Floating point representation:

Real numbers are represented in two parts: A mantissa (significand) and an exponent. If the representation is in the base β then:

4-1

 $x=\pm (.d_1d_2\cdots d_t)eta^e$

▶ $.d_1d_2\cdots d_t$ is a fraction in the base- β representation (Generally the form is normalized in that $d_1 \neq 0$), and e is an integer

> Often, more convenient to rewrite the above as:

 $x=\pm(m/eta^t) imeseta^e\equiv\pm m imeseta^{e-t}$

4-3

• Mantissa m is an integer with $0 \le m \le \beta^t - 1$.

Machine precision - machine epsilon

Notation : fl(x) = closest floating point representation of real number x ('rounding')

When a number x is very small, there is a point when 1+x == 1 in a machine sense. The computer no longer makes a difference between 1 and 1 + x.

Machine epsilon: The smallest number ϵ such that $1 + \epsilon$ is a float that is different from one, is called machine epsilon. Denoted by macheps or eps, it represents the distance from 1 to the next larger floating point number.

4-4

> With previous representation, eps is equal to $\beta^{-(t-1)}$.

Example: In IEEE standard double precision, $\beta = 2$, and t = 53 (includes 'hidden bit'). Therefore eps $= 2^{-52}$.

Unit Round-off A real number x can be approximated by a floating number fl(x) with relative error no larger than $\underline{\mathbf{u}} = \frac{1}{2}\beta^{-(t-1)}$.

- \succ <u>u</u> is called Unit Round-off.
- In fact can easily show:

 $fl(x)=x(1+\delta)$ with $|\delta|<{
m \underline{u}}$

Matlab experiment: find the machine epsilon on your computer.

Many discussions on what conditions/ rules should be satisfied by floating point arithmetic. The IEEE standard is a set of standards adopted by many CPU manufacturers.

Example: Consider the sum of 3 numbers: y = a + b + c.

4-5

$$\blacktriangleright$$
 Done as $fl(fl(a+b)+c)$

$$egin{aligned} \eta &= fl(a+b) = (a+b)(1+\epsilon_1) \ y_1 &= fl(\eta+c) = (\eta+c)(1+\epsilon_2) \ &= [(a+b)(1+\epsilon_1)+c] \, (1+\epsilon_2) \ &= [(a+b+c)+(a+b)\epsilon_1)] \, (1+\epsilon_2) \ &= (a+b+c) \left[1+rac{a+b}{a+b+c}\epsilon_1(1+\epsilon_2)+\epsilon_2
ight] \end{aligned}$$

So disregarding the high order term $\epsilon_1\epsilon_2$

$$fl(fl(a+b)+c) = (a+b+c)(1+\epsilon_3) \ \epsilon_3 pprox rac{a+b}{a+b+c} \epsilon_1 + \epsilon_2$$

4-7

TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 - Float

TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 - Float

Rule 1.

$$fl(x) = x(1+\epsilon), \quad ext{where} \quad |\epsilon| \leq \underline{\mathrm{u}}$$

Rule 2. For all operations \odot (one of +, -, *, /)

 $fl(x \odot y) = (x \odot y)(1 + \epsilon_{\odot}), \hspace{0.2cm}$ where $|\epsilon_{\odot}| \leq \underline{\mathrm{u}}$

Rule 3. For +, * operations

$$fl(a \odot b) = fl(b \odot a)$$

Matlab experiment: Verify experimentally Rule 3 with 10,000 randomly generated numbers a_i , b_i .

4-6

 \blacktriangleright If we redid the computation as $y_2 = fl(a + fl(b + c))$ we would find

$$fl(a+fl(b+c))=(a+b+c)(1+\epsilon_4) \ \epsilon_4pprox {b+c\over a+b+c}\epsilon_1+\epsilon_2$$

The error is amplified by the factor (a + b)/y in the first case and (b + c)/y in the second case.

 \blacktriangleright In order to sum n numbers accurately, it is better to start with small numbers first. [However, sorting before adding is not worth it.]

4-8

But watch out if the numbers have mixed signs!

4-8

TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 - Float

The absolute value notation

For a given vector x, |x| is the vector with components $|x_i|$, i.e., |x| is the component-wise absolute value of x.

> Similarly for matrices:

$$|A| = \{|a_{ij}|\}_{i=1,...,m;\;j=1,...,n}$$

> An obvious result: The basic inequality

$$|fl(a_{ij}) - a_{ij}| \leq \underline{\mathrm{u}} \, |a_{ij}|$$

translates into

$$fl(A) = A + E$$
 with $|E| \leq \underline{\mathrm{u}} |A|$

Example:
$$A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \quad B = \begin{pmatrix} d & e \\ 0 & f \end{pmatrix}$$

Consider the product: fl(A.B) =

$$egin{bmatrix} ad(1+\epsilon_1) & \left[ae(1+\epsilon_2)+bf(1+\epsilon_3)
ight](1+\epsilon_4)\ 0 & cf(1+\epsilon_5) \end{bmatrix}$$

with $\epsilon_i \leq \underline{u}$, for i = 1, ..., 5. Result can be written as:

$$egin{bmatrix} a & b(1+\epsilon_3)(1+\epsilon_4) \ \hline 0 & c(1+\epsilon_5) \end{bmatrix} egin{bmatrix} d(1+\epsilon_1) & e(1+\epsilon_2)(1+\epsilon_4) \ \hline 0 & f \end{bmatrix}$$

> So
$$fl(A.B) = (A + E_A)(B + E_B)$$
.

 \blacktriangleright Backward errors E_A, E_B satisfy:

 $|E_A| \leq 2 \underline{\mathrm{u}} \, |A| + O(\underline{\mathrm{u}}^{\, 2}) \ ; \qquad |E_B| \leq 2 \underline{\mathrm{u}} \, |B| + O(\underline{\mathrm{u}}^{\, 2})$

4-11

Backward and forward errors

Assume the approximation \hat{y} to y = alg(x) is computed by some algorithm with arithmetic precision ϵ . Possible analysis: find an upper bound for the Forward error

$$|\Delta y| = |y - \hat{y}|$$

> This is not always easy.

Alternative question:find equivalent perturbation on initial data(x) that produces the result \hat{y} . In other words, find Δx so that:

$$\mathsf{alg}(x+\Delta x)=\hat{y}$$

The value of $|\Delta x|$ is called the backward error. An analysis to find an upper bound for $|\Delta x|$ is called Backward error analysis.

TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1–.2 – Float

> When solving Ax = b by Gaussian Elimination, we will see that a bound on $||e_x||$ such that this holds exactly:

$$A(x_{ ext{computed}} + e_x) = b$$

is much harder to find than bounds on $\|E_A\|$, $\|e_b\|$ such that this holds exactly:

$$(A+E_A)x_{\mathrm{computed}}=(b+e_b).$$

Note: In many instances backward errors are more meaningful than forward errors: if initial data is accurate only to 4 digits say, then my algorithm for computing x need not guarantee a backward error of less then 10^{-10} for example. A backward error of order 10^{-4} is acceptable.

TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1–.2 – Float

Error Analysis: Inner product

Inner products are in the innermost parts of many calculations. Their analysis is important.

Lemma: If $|\delta_i| \leq \underline{\mathbf{u}}$ and $n\underline{\mathbf{u}} < 1$ then $\Pi_{i=1}^n(1+\delta_i)=1+ heta_n$ where $| heta_n|\leq rac{n {ar u}}{1-n u}$ **Example:** Previous sum of numbers can be written $fl(a+b+c) = a(1+\epsilon_1)(1+\epsilon_2)$ $+ b(1 + \epsilon_1)(1 + \epsilon_2) + c(1 + \epsilon_2)$ > Common notation $\gamma_n \equiv \frac{n\underline{\mathbf{u}}}{1-n\underline{\mathbf{u}}}$ $= a(1 + \theta_1) + b(1 + \theta_2) + c(1 + \theta_3)$ = exact sum of slightly perturbed inputs, ▲ Prove the lemma [Hint: use induction] where all θ_i 's satisfy $|\theta_i| \leq 1.01 n u$ (here n = 2). > Alternatively, can write 'forward' bound: $|fl(a+b+c)-(a+b+c)| \leq |a heta_1|+|b heta_2|+|c heta_3|.$ TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 - Float TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 - Float 4-13 4-14 4-13 Analysis of inner products (cont.) Expand: $s_3 = x_1 y_1 (1 + \eta_1) (1 + \epsilon_2) (1 + \epsilon_3)$ $+x_2y_2(1+\eta_2)(1+\epsilon_2)(1+\epsilon_3)$ $s_n = fl(x_1 * y_1 + x_2 * y_2 + \dots + x_n * y_n)$ Consider $+x_3y_3(1+\eta_3)(1+\epsilon_3)$ \succ Induction would show that [with convention that $\epsilon_1 \equiv 0$] \succ In what follows η_i 's come from *, ϵ_i 's comme from +They satisfy: $|\eta_i| < \mathbf{u}$ and $|\epsilon_i| < \mathbf{u}$. $s_n = \sum_{i=1}^n x_i y_i (1+\eta_i) \; \prod_{i=1}^n (1+\epsilon_j)$ \blacktriangleright The inner product s_n is computed as: 1. $s_1 = fl(x_1y_1) = (x_1y_1)(1+\eta_1)$ 2. $s_2 = fl(s_1 + fl(x_2y_2)) = fl(s_1 + x_2y_2(1 + \eta_2))$ $= (x_1y_1(1+n_1)+x_2y_2(1+n_2))(1+\epsilon_2)$ *Q*: How many terms in the coefficient of $x_i y_i$ do we have? $= x_1 y_1 (1 + \eta_1) (1 + \epsilon_2) + x_2 y_2 (1 + \eta_2) (1 + \epsilon_2)$ • When i > 1 : 1 + (n - i + 1) = n - i + 2• When i = 1: n (since $\epsilon_1 = 0$ does not count) 3. $s_3 = fl(s_2 + fl(x_3y_3)) = fl(s_2 + x_3y_3(1 + \eta_3))$ $x = (s_2 + x_3 y_3 (1 + \eta_3))(1 + \epsilon_3)$ Bottom line: always < n.</p> TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 - Float TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 - Float

> Can use the following simpler result:

Lemma: If $|\delta_i| \leq \underline{\mathrm{u}}$ and $n \underline{\mathrm{u}} < .01$ then

 $\Pi_{i=1}^n(1+\delta_i) = 1+ heta_n$ where $| heta_n| \leq 1.01n \underline{\mathrm{u}}$

4-16

► For each of these products
$$(1 + \eta_i) \prod_{j=i}^{n} (1 + \epsilon_j) = 1 + \theta_i, \text{ with } |\theta_i| \leq \gamma_n \underline{u} \text{ so:}$$

$$s_n = \sum_{i=1}^{n} x_i y_i (1 + \theta_i) \text{ with } |\theta_i| \leq \gamma_n \text{ or:}$$

$$fl(\sum_{i=1}^{n} x_i y_i) = \sum_{i=1}^{n} x_i y_i + \sum_{i=1}^{n} x_i y_i \theta_i \text{ with } |\theta_i| \leq \gamma_n$$

$$\int Ihis \text{ leads to the final result (forward form)}$$

$$\left| fl\left(\sum_{i=1}^{n} x_i y_i\right) - \sum_{i=1}^{n} x_i y_i \right| \leq \gamma_n \sum_{i=1}^{n} |x_i| |y_i|$$

$$fl\left(\sum_{i=1}^{n} x_i y_i\right) = \sum_{i=1}^{n} x_i y_i (1 + \theta_i) \text{ with } |\theta_i| \leq \gamma_n$$

$$fl\left(\sum_{i=1}^{n} x_i y_i\right) = \sum_{i=1}^{n} x_i y_i (1 + \theta_i) \text{ with } |\theta_i| \leq \gamma_n$$

$$fl\left(\sum_{i=1}^{n} x_i y_i\right) = \sum_{i=1}^{n} x_i y_i (1 + \theta_i) \text{ with } |\theta_i| \leq \gamma_n$$

$$fl(x^Ty) = [x \cdot (1 + d_x)]^T [y \cdot (1 + d_y)]$$

$$here ||d_{\square}|_{\infty} \leq 1.01 n \underline{u}, \square = x, y.$$

$$here ||d_{\square}|_{\infty} \leq 1.01 n \underline{u}, \square = x, y.$$

$$here ||d_{\square}|_{\infty} \leq 1.01 n \underline{u}.$$

$$here ||d_{\square}|_{\infty} \leq 0.1.$$

$$here ||d_{\square$$

> Consequence of lemma:

 $|fl(A\ast B)-A\ast B|\leq \gamma_n \ |A|\ast |B|$

> Another way to write the result (less precise) is

 $|fl(x^Ty)-x^Ty|\leq \;n\; \underline{\mathrm{u}}\; |x|^T\; |y|+O(\underline{\mathrm{u}}^{\,2})$

4-19

Assume you use single precision for which you have $\underline{\mathbf{u}} = 2. \times 10^{-6}$. What is the largest n for which $n\underline{\mathbf{u}} \leq 0.01$ holds? Any conclusions for the use of single precision arithmetic?

Multiply What does the main result on inner products imply for the case when y = x? [Contrast the relative accuracy you get in this case vs. the general case when $y \neq x$]

4-20

Show for any x, y , there exist $\Delta x, \Delta y$ such that $fl(x^Ty) = (x + \Delta x)^Ty$, with $ \Delta x \leq \gamma_n x $ $fl(x^Ty) = x^T(y + \Delta y)$, with $ \Delta y \leq \gamma_n y $ (Continuation) Let A an $m \times n$ matrix, x an n -vector, and $y = Ax$. Show that there exist a matrix ΔA such $fl(y) = (A + \Delta A)x$, with $ \Delta A \leq \gamma_n A $ (Continuation) From the above derive a result about a column of the product of two matrices A and B . Does a similar result hold for the product AB as a whole?	Error Analysis for linear systems: Triangular case> RecallALGORITHM : 1. Back-Substitution algorithmFor $i = n : -1 : 1$ do: $t := b_i$ For $j = i + 1 : n$ do $t := t - a_{ij}x_j$ For $j = i + 1 : n$ do $t := t - a_{ij}x_j$ End $X_i = t/a_{ii}$
4-21 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1–.2 – Float	 We must require that each a_{ii} ≠ 0 Round-off error (use previous results for (·, ·))? 4-22TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.12 - Float
4-21	4-22
The computed solution \hat{x} of the triangular system $Ux = b$ computed by the back-substitution algorithm satisfies: $(U+E)\hat{x} = b$ with $ E \le n \ \underline{\mathrm{u}} \ U + O(\underline{\mathrm{u}}^2)$	Error Analysis for Gaussian Elimination If no zero pivots are encountered during Gaussian elimination (no pivoting) then the computed factors \hat{L} and \hat{U} satisfy $\hat{L}\hat{U} = A + H$ with
 Backward error analysis. Computed <i>x</i> solves a slightly perturbed system. Backward error not large in general. It is said that triangular solve is "backward stable". 	$egin{aligned} H \leq 3(n-1) \ imes \ \underline{\mathbf{u}} \ ig(A + \hat{L} \ \hat{U} ig)+O(\underline{\mathbf{u}}^{2}) \ \end{bmatrix} \ \end{bmatrix}$ Solution \hat{x} computed via $\hat{L}\hat{y}=b$ and $\hat{U}\hat{x}=\hat{y}$ is s. t. $(A+E)\hat{x}=b$ with $ E \leq n\underline{\mathbf{u}} \ ig(3 A \ +5 \ \hat{L} \ \hat{U} ig)+O(\underline{\mathbf{u}}^{2}) \end{aligned}$
4-23 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.12 - Float	4-24 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.12 - Float
4-23	4-24

- > "Backward" error estimate.
- \blacktriangleright $|\hat{L}|$ and $|\hat{U}|$ are not known in advance they can be large.
- > What if partial pivoting is used?

> Permutations introduce no errors. Equivalent to standard LU factorization on matrix PA.

 $ig> |\hat{L}|$ is small since $l_{ij} \leq 1$. Therefore, only U is "uncertain"

> In practice partial pivoting is "stable" – i.e., it is highly unlikely to have a very large U.

4-25	TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.12 - Float
	4-25