FLOATING POINT ARITHMETHIC - ERROR ANALYSIS

e Brief review of floating point arithmetic
e Model of floating point arithmetic

e Notation, backward and forward errors

Roundoff errors and floating-point arithmetic

» The basic problem: The set A of all possible representable
numbers on a given machine is finite - but we would like to use this
set to perform standard arithmetic operations (+,*,-,/) on an infinite
set. The usual algebra rules are no longer satisfied since results of
operations are rounded.

» Basic algebra breaks down in floating point arithmetic.

In floating point arithmetic.

a+(b+c)!'= (a+b)+c

Matlab experiment: For 10,000 random numbers find number of
instances when the above is true. Same thing for the multiplication..

4-2 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

4-2

Floating point representation:

Real numbers are represented in two parts: A mantissa (significand)
and an exponent. If the representation is in the base 3 then:

r = :l:(.dldz ©o0o0 dt),@e

» .dydy - - - dyis a fraction in the base-(3 representation (Generally
the form is normalized in that dy # 0), and e is an integer

» Often, more convenient to rewrite the above as:

x==x(m/B%) x B3°=+tm x 3¢t

» Mantissa m is an integer with 0 < m < 3t — 1.

43 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

43

Machine precision - machine epsilon

» Notation : fl(x) = closest floating point representation
of real number x ('rounding’)

» When a number x is very small, there is a point when 14+x ==
1 in a machine sense. The computer no longer makes a difference
between 1 and 1 + .

Machine epsilon: | The smallest number € such that 1 + € is a

tloat that is different from one, is called machine epsilon. Denoted
by macheps or eps, it represents the distance from 1 to the next
larger floating point number.

» With previous representation, eps is equal to 3~(¢—1.

4-4 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

4-4

In IEEE standard double precision, 3 = 2, and t =
53 (includes ‘hidden bit'). Therefore eps = 2752,

Unit Round-off A real number & can be approximated by a floating
number fl(x) with relative error no larger than u = %ﬁ_(t_l).

» u is called Unit Round-off.

» In fact can easily show:

fl(x) = (1 + §) with |§] < u

Matlab experiment: find the machine epsilon on your computer.

» Many discussions on what conditions/ rules should be satisfied
by floating point arithmetic. The IEEE standard is a set of standards
adopted by many CPU manufacturers.

4-5 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

Rule 1.

fl(x) =x(1 +€), where |¢] <u

Rule 2. | For all operations ® (one of +, —, *, /)

fllzx@y) =(xOy)(1+e€), where [eg] <u

Rule 3. | For +, % operations

fl(a®b) = fl(b® a)

Matlab experiment: Verify experimentally Rule 3 with 10,000
randomly generated numbers a;, b;.

4-6 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

4-6

Consider the sum of 3 numbers: y = a + b + c.

» Done as fl(fl(a + b) + ¢)

n = flla+b)=(a+b)(1+e)

y1 = fln+c) =n+c)(1+e)
=[(a+b)(1+e€)+c(1+e)
= [(a+b+c)+ (a+b)er)] (1 + e2)

a-+b
= (CL+b+C) 1+m€1(1+62)+62

So disregarding the high order term €€,

fl(fl(a+b)+c) = (a+ b+ c)(1+ €3)
a-+b
€3 X" ———€1 t+ €

at+b+ece

4.7 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

» I we redid the computation as ys = fl(a + fl(b + ¢)) we

would find

flla+ fl(b+c)) = (a+b+c)(1+ e)
b+ec

€GN ————¢€1 + 6

at+b+ece

» The error is amplified by the factor (@ 4+ b)/y in the first case
and (b + ¢)/y in the second case.

» In order to sum m numbers accurately, it is better to start with
small numbers first. [However, sorting before adding is not worth it.]

» But watch out if the numbers have mixed signs!

4-8 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

48

The absolute value notation

» For a given vector x, || is the vector with components |x;],
i.e., || is the component-wise absolute value of x.

» Similarly for matrices:

|A| = {laij| }iz1,....m; j=1,....n
» An obvious result: The basic inequality
|fl(aij) — ai] < u fai
translates into

fl(A)=A+E with |E|<u |A|

» A< Bmeansa;; <bjforall1<i:<m; 1<j53<n

4-9 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

4-9

Backward and forward errors

» Assume the approximation g to y = alg(x) is computed by
some algorithm with arithmetic precision €. Possible analysis: find
an upper bound for the Forward error

|Ay| = |y — 9|

» This is not always easy.

Alternative question: | find equivalent perturbation on initial data

() that produces the result §. In other words, find Az so that:
alg(x + Ax) =g
» The value of |Ax| is called the backward error. An analysis to

find an upper bound for |Ax| is called Backward error analysis.

4-10 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

4-10

a=(30) B=(37)

Consider the product: fl(A.B) =

lad(l +e) | [ae(l +e) +bf(1+)] (1 + e4)]
0 | cf(1+ es5)

with €; < u, forz = 1,..., 5. Result can be written as:

lGO b(1:(—;ﬁ(;)—l— e4)1 ld(l T)el) e(1+ 6})(1 + 64)1

> So fl(A.B) = (A + E,)(B + E3).

» Backward errors E 4, Ep satisfy:
|Eal <2ulA|+O0(u?; |Ep| <2u|B|+O0(u?)

4-11 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

4-11

» When solving Ax = b by Gaussian Elimination, we will see that
a bound on ||e|| such that this holds exactly:

A(wcomputed + ea:) =b

is much harder to find than bounds on ||E4||, ||es]|| such that this
holds exactly:

(A + EA)wcomputed = (b + eb).

Note: In many instances backward errors are more meaningful than
forward errors: if initial data is accurate only to 4 digits say, then
my algorithm for computing x need not guarantee a backward error
of less then 10719 for example. A backward error of order 10=% is
acceptable.

4-12 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

4-12

Error Analysis: Inner product

» Inner products are in the innermost parts of many calculations.
Their analysis is important.

Lemma: If |6;] <u and nu < 1 then

IT? (14 6;) =1+ 6, where |6,| < e

1 —nu
. - nu
» Common notation vy, = r—
Prove the lemma [Hint: use induction]
4-13 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

4-13

» Can use the following simpler result:

Lemma: If |6;] < u and mu < .01 then
I ,(1446;) =1+ 6, where |6, <1.01nu

Example: | Previous sum of numbers can be written

flla+b+c) = a(l+ €)1+ €)
+ b(1+e€)(1+e€) + c(l+e€)

= exact sum of slightly perturbed inputs,
where all 6;'s satisfy |6;| < 1.01nu (here n = 2).

» Alternatively, can write ‘forward’ bound:

|fl(a4+b+4+c) — (a+ b+ c)| < |aby| + |bO2| + |cO3].

4-14 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

4-14

Analysis of inner products (cont.)

Consider Sp=fl(x1*y1 + Ta*xyas+ -+ 4+ Ty * Yp)

» In what follows 7);'s come from *, €;'s comme from +
» They satisfy: |n;| < u and |€| < u.

» The inner product s,, is computed as:

L sy = fl(z1y1) = (z1y1) (1 + m)

2. 8o = fl(s1+ fl(z2y2)) = Fl(s1 + x2y2(1 + 1m2))
= (1y1(1 + m1) + z292(1 + m2)) (1 + €2)
= z1y1(1 + m)(1 + €2) + @2y2(1 + 12) (1 + €2)

3. s3 = fl(s2 + fl(xsys)) = fl(s2 + x3ys(1 + n3))
= (s2 + x3y3(1 + n3)) (1 + €3)

4-15 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

4-15

Expand: s3 = x1y1(1 4+ m1) (1 + €2)(1 + €3)
+22y2(1 + 12) (1 + €2) (1 + €3)
+3ys(1 + n3) (1 + €3)

»Induction would show that [with convention that €; = 0]
sn=> myi(1+m) [[(1+¢)
i=1 =i

@: How many terms in the coefficient of x;y; do we have?

A e Wheni>1:14+(n—4i4+1)=n—1+2
@ When ¢ =1: n (since ¢, = 0 does not count)

» Bottom line: always < n.
4-16 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

4-16

» For each of these products
(1 +m) H?:i(l +e€;) =1+06;, with |0;] <~v,u so

Sn = i Tiyi(1 4+ 6;) with [6;] <7, or

FUOTE wayi) = Do mayi + > ®iyibi with 6;] < vy

» This leads to the final result (forward form)
1 (Z mz’!/z) = miyi
i=1 i=1

» or (backward form)

£l (Z my) = zyi(1+6;) with [6;] < n
=1

1=1

S Tn Z |wz||yl|
=1

4-17 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

Main result on inner products:

» Backward error expression:

fU(aTy) = [z (1 + do)["y -+ (1 + dy)]

where ||do||cc < 1.01nu, O =z, y.

» Can show equality valid even if one of the d,, d, absent.

» Forward error expression: |fl(xTy) — xTy| < n |2|T |yl

with 0 < ~,, < 1.01nu.
» Elementwise absolute value || and multiply .* notation.

» Above assumes nu < .01.
Foru = 2.0 x 10716, this holds for n < 4.5 x 1013

4-18 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

4-18

» Consequence of lemma:

|fI(A % B) — Ax B| < v, |A] % |B|

» Another way to write the result (less precise) is

|fl(zTy) — 2Ty| < nu |z|T |y| + O(u?)

4-19 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

4-19

Assume you use single precision for which you have u = 2. X
1075, What is the largest n for which nu < 0.01 holds? Any
conclusions for the use of single precision arithmetic?

What does the main result on inner products imply for the case
when y = x? [Contrast the relative accuracy you get in this case
vs. the general case when y # x|

4-20 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

Show for any x, y, there exist Az, Ay such that
fl(z"y) = (z 4+ Azx)Ty, with [Az| < ||
fl(a"y) = 2" (y + Ay), with |Ay| <,y
(Continuation) Let A an m X m matrix, an n-vector, and
y = Ax. Show that there exist a matrix A A such
Fl(y) = (A+ Ad)z, with |AA| < 74|
(Continuation) From the above derive a result about a column

of the product of two matrices A and B. Does a similar result hold
for the product AB as a whole?

Error Analysis for linear systems: Triangular case

» Recall

ALGORITHM : 1. Back-Substitution algorithm

fFort =n:—1:1 do:
t::bi

Forj:i—}—]_:ndO
} t:=t— (ai,i—}—l:na CCi+1:n)

t:=1t—a;x; ’
e = t — an inner product

End
r; = t/aii
End

» We must require that each a;; # 0

» Round-off error (use previous results for (-, +))?

421 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float 422 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float
o -
The computed solution & of the triangular system Ux = b
computed by the back-substitution algorithm satisfies:
(U+E)z=b If. no zero pivots are encountered during GaLissian. elimination (no
pivoting) then the computed factors L and U satisfy
with

|E| <nu U +0(u?

» Backward error analysis. Computed @ solves a slightly perturbed
system.

» Backward error not large in general. It is said that triangular
solve is “backward stable”.

4-23 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

423

LU=A+H
with
|H| < 3(n—1) x u (|A| + |L| |U]) + O(u?)

Solution & computed via Lj = band UZ = g is s. t.

(A + E)& = b with

|E| < nu (3|A| +5|L||U]) + O(u?)

4-24 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

» “Backward” error estimate.
» |L| and |U] are not known in advance — they can be large.
» What if partial pivoting is used?

» Permutations introduce no errors. Equivalent to standard LU
factorization on matrix PA.

» |L| is small since l;; < 1. Therefore, only U is "uncertain”

» In practice partial pivoting is “stable” — i.e., it is highly unlikely
to have a very large U.

4-25 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

