SOLVING LINEAR SYSTEMS OF EQUATIONS

- Background on linear systems
- Gaussian elimination and the Gauss-Jordan algorithms
- The LU factorization
- Gaussian Elimination with pivoting
- Case of banded systems

3-1

Standard mathematical solution by Cramer's rule:

$$x_i = \det(A_i)/\det(A)$$

 $A_i = \text{matrix obtained by replacing } i\text{-th column by } b.$

ightharpoonup Note: This formula is useless in practice beyond n=3 or n=4.

Three situations:

- 1. The matrix A is nonsingular. There is a unique solution given by $x=A^{-1}b$.
- 2. The matrix A is singular and $b \in \operatorname{Ran}(A)$. There are infinitely many solutions.
- 3. The matrix A is singular and $b \notin \operatorname{Ran}(A)$. There are no solutions.

TB: 20-22; AB: 1.2.1–1.2.6; GvL 3.{1,3,5} – Systems

Background: Linear systems

The Problem: A is an $n \times n$ matrix, and b a vector of \mathbb{R}^n . Find x such that:

$$Ax = b$$

ightharpoonup x is the unknown vector, b the right-hand side, and A is the coefficient matrix

Example:

$$\left\{ \begin{array}{l} 2x_1 \,+\, 4x_2 \,+\, 4x_3 \,=\, 6 \\ x_1 \,+\, 5x_2 \,+\, 6x_3 \,=\, 4 \\ x_1 \,+\, 3x_2 \,+\, x_3 \,=\, 8 \end{array} \right. \, \left(\begin{array}{l} 2 \,\, 4 \,\, 4 \\ 1 \,\, 5 \,\, 6 \\ 1 \,\, 3 \,\, 1 \end{array} \right) \, \left(\begin{array}{l} x_1 \\ x_2 \\ x_3 \end{array} \right) \,=\, \left(\begin{array}{l} 6 \\ 4 \\ 8 \end{array} \right)$$

✓ Solution of above system?

-2 TB: 20-22; AB: 1.2.1–1.2.6; GvL 3.{1,3,5} – Systems

3-2

Example: (1) Let $A = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$ $b = \begin{pmatrix} 1 \\ 8 \end{pmatrix}$. A is nonsingular \blacktriangleright a unique solution $x = \begin{pmatrix} 0.5 \\ 2 \end{pmatrix}$.

Example: (2) Case where A is singular & $b \in \operatorname{Ran}(A)$:

$$A=egin{pmatrix} 2 & 0 \ 0 & 0 \end{pmatrix}, \quad b=egin{pmatrix} 1 \ 0 \end{pmatrix}.$$

ightharpoonup infinitely many solutions: $x(lpha)=egin{pmatrix} 0.5 \ lpha \end{pmatrix}$ $\ orall \ lpha.$

Example: (3) Let A same as above, but $b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

No solutions since 2nd equation cannot be satisfied

TB: 20-22; AB: 1.2.1–1.2.6; GvL 3.{1,3,5} – Systems

$Triangular\ linear\ systems$

Example:

$$\begin{pmatrix} 2 & 4 & 4 \\ 0 & 5 & -2 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix}$$

- ightharpoonup One equation can be trivially solved: the last one. $x_3=2$
- $ightharpoonup x_3$ is known we can now solve the 2nd equation:

$$5x_2 - 2x_3 = 1 \rightarrow 5x_2 - 2 \times 2 = 1 \rightarrow x_2 = 1$$

ightharpoonup Finally x_1 can be determined similarly:

$$2x_1 + 4x_2 + 4x_3 = 2 \rightarrow \dots \rightarrow x_1 = -5$$

TB: 20-22; AB: 1.2.1–1.2.6; GvL 3.{1,3,5} – Systems

3-5

ALGORITHM: 1. Back-Substitution algorithm

For
$$i=n:-1:1$$
 do: $t:=b_i$ For $j=i+1:n$ do $t:=t-a_{ij}x_j$ $t:=b_i-(a_{i,i+1:n},x_{i+1:n})$ $t:=t-a_{ij}x_j$ $t:=b_i-(a_{i,i+1:n},x_{i+1:n})$ $t:=b_i-(a_{i,i+1:n},x_{i+1:n})$ $t:=b_i-(a_{i,i+1:n},x_{i+1:n})$ $t:=b_i-(a_{i,i+1:n},x_{i+1:n})$ $t:=b_i-(a_{i,i+1:n},x_{i+1:n})$ $t:=b_i-(a_{i,i+1:n},x_{i+1:n})$ $t:=b_i-(a_{i,i+1:n},x_{i+1:n})$ $t:=b_i-(a_{i,i+1:n},x_{i+1:n})$

- \blacktriangleright We must require that each $a_{ii} \neq 0$
- ➤ Operation count?

TB: 20-22; AB: 1.2.1–1.2.6; GvL 3.{1,3,5} – Systems

3-6

Column version of back-substitution

Back-Substitution algorithm. Column version

For
$$j=n:-1:1$$
 do: $x_j=b_j/a_{jj}$ For $i=1:j-1$ do $b_i:=b_i-x_j*a_{ij}$ End

Justify the above algorithm [Show that it does indeed compute the solution]

➤ See text for analogous algorithms for lower triangular systems.

Linear Systems of Equations: Gaussian Elimination

➤ Back to arbitrary linear systems.

<u>Principle of the method:</u> Since triangular systems are easy to solve, we will transform a linear system into one that is triangular. Main operation: combine rows so that zeros appear in the required locations to make the system triangular.

Notation: use a Tableau:

Main operation used: scaling and adding rows.

Example: Replace row2 by: row2 - $\frac{1}{2}$ *row1:

This is equivalent to:

$$\begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 2 & 4 & 4 & 2 \\ 1 & 3 & 1 & 1 \\ 1 & 5 & 6 & -6 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 1 & 5 & 6 & -6 \end{bmatrix}$$

➤ The left-hand matrix is of the form

$$M = I - ve_1^T$$
 with $v = egin{pmatrix} 0 \ rac{1}{2} \ 0 \end{pmatrix}$

TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} - Systems

Linear Systems of Equations: Gaussian Elimination

Go back to original system. Step 1 must transform:

 $row_2 := row_2 - \frac{1}{2} \times row_1$: $row_3 := row_3 - \frac{1}{2} \times row_1$:

$$\begin{bmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 1 & 5 & 6 & -6 \end{bmatrix}$$

TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} - Systems

Equivalent to

$$\begin{vmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ -\frac{1}{2} & 0 & 1 \end{vmatrix} \times \begin{vmatrix} 2 & 4 & 4 & 2 \\ 1 & 3 & 1 & 1 \\ 1 & 5 & 6 & -6 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 3 & 4 & -7 \end{vmatrix}$$

$$[A,b]
ightarrow [M_1A,M_1b]; \;\; M_1 = I - v^{(1)}e_1^T; \;\; v^{(1)} = egin{pmatrix} 0 \ rac{1}{2} \ rac{1}{2} \end{pmatrix}$$

New system $A_1x = b_1$. Step 2 must now transform:

$$row_3 := row_3 - 3 imes row_2 :
ightarrow egin{bmatrix} 2 & 4 & 4 & 2 \ 0 & 1 & -1 & 0 \ 0 & 0 & 7 & -7 \end{bmatrix}$$

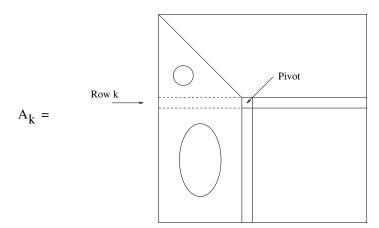
Equivalent to

$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{vmatrix} \times \begin{vmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 3 & 4 & -7 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 7 & -7 \end{vmatrix}$$

Second transformation is as follows:

$$[A_1,b_1]
ightarrow [M_2A_1,M_2b_1] \ M_2 = I - v^{(2)} e_2^T \ v^{(2)} = egin{pmatrix} 0 \ 0 \ 3 \end{pmatrix}$$

➤ Triangular system ➤ Solve.



3-13

TB: 20-22; AB: 1.2.1–1.2.6; GvL 3. $\{1,3,5\}$ – Systems

3-13

ALGORITHM: 2. Gaussian Elimination

- 1. For k = 1: n-1 Do:
- 2. For i = k + 1 : n Do:
- $3. piv := a_{ik}/a_{kk}$
- 4. For j := k + 1 : n + 1 Do :
- $5. a_{ij} := a_{ij} piv * a_{kj}$
- 6. End
- 6. End
- 7. End

Operation count:

$$T = \sum_{k=1}^{n-1} \sum_{i=k+1}^{n} [1 + \sum_{j=k+1}^{n+1} 2] = \sum_{k=1}^{n-1} \sum_{i=k+1}^{n} (2(n-k) + 3) = ...$$

Complete the above calculation. Order of the cost?

TB: 20-22; AB: 1.2.1–1.2.6; GvL 3.{1,3,5} – Systems

3-14

The LU factorization

Now ignore the right-hand side from the transformations.

Observation: Gaussian elimination is equivalent to n-1 successive Gaussian transformations, i.e., multiplications with matrices of the form $M_k=I-v^{(k)}e_k^T$, where the first k components of $v^{(k)}$ equal zero.

ightharpoonup Set $A_0 \equiv A$

$$A o M_1 A_0 = A_1 o M_2 A_1 = A_2 o M_3 A_2 = A_3 \cdots \ o M_{n-1} A_{n-2} = A_{n-1} \equiv U$$

ightharpoonup Last $A_k \equiv U$ is an upper triangular matrix.

ightharpoonup At each step we have: $A_k=M_{k+1}^{-1}A_{k+1}$. Therefore:

$$A_0 = M_1^{-1} A_1$$

$$= M_1^{-1} M_2^{-1} A_2$$

$$= M_1^{-1} M_2^{-1} M_3^{-1} A_3$$

$$= \dots$$

$$= M_1^{-1} M_2^{-1} M_3^{-1} \cdots M_{n-1}^{-1} A_{n-1}$$

- $L = M_1^{-1} M_2^{-1} M_3^{-1} \cdots M_{n-1}^{-1}$
- ightharpoonup Note: L is Lower triangular, A_{n-1} is upper triangular
- \blacktriangleright LU decomposition : A = LU

TB: 20-22; AB: 1.2.1–1.2.6; GvL 3.{1,3,5} – Systems

TB: 20-22; AB: 1.2.1–1.2.6; GvL 3.{1,3,5} – Systems

3-13

3-1

$\overline{How to get L?}$

$$L = M_1^{-1} M_2^{-1} M_3^{-1} \cdots M_{n-1}^{-1}$$

- Consider only the first 2 matrices in this product.
- ightharpoonup Note $M_k^{-1} = (I v^{(k)} e_k^T)^{-1} = (I + v^{(k)} e_k^T)$. So:

$$M_1^{-1}M_2^{-1} = (I + v^{(1)}e_1^T)(I + v^{(2)}e_2^T) = I + v^{(1)}e_1^T + v^{(2)}e_2^T.$$

Generally,

$$M_1^{-1}M_2^{-1}\cdots M_k^{-1} = I + v^{(1)}e_1^T + v^{(2)}e_2^T + \cdots v^{(k)}e_k^T$$

The L factor is a lower triangular matrix with ones on the diagonal. Column k of L, contains the multipliers l_{ik} used in the k-th step of Gaussian elimination.

-17 TB: 20-22; A

TB: 20-22; AB: 1.2.1–1.2.6; GvL $3.\{1,3,5\}$ – Systems

3-17

Practical use: Show how to use the LU factorization to solve linear systems with the same matrix A and different b's.

- LU factorization of the matrix $A = \begin{pmatrix} 2 & 4 & 4 \\ 1 & 5 & 6 \\ 1 & 3 & 1 \end{pmatrix}$?
- True or false: "Computing the LU factorization of matrix A involves more arithmetic operations than solving a linear system Ax = b by Gaussian elimination".

A matrix A has an LU decomposition if

$$\det(A(1:k,1:k)) \neq 0$$
 for $k = 1, \dots, n-1$.

In this case, the determinant of A satisfies:

$$\det A = \det(U) = \prod_{i=1}^n u_{ii}$$

If, in addition, \boldsymbol{A} is nonsingular, then the LU factorization is unique.

3-1

TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} - Systems

3-18

Gauss-Jordan Elimination

Principle of the method: We will now transform the system into one that is even easier to solve than triangular systems, namely a diagonal system. The method is very similar to Gaussian Elimination. It is just a bit more expensive.

Back to original system. Step 1 must transform:

 $row_2 := row_2 - 0.5 \times row_1$: $row_3 := row_3 - 0.5 \times row_1$:

$$\begin{bmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 1 & 5 & 6 & -6 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 3 & 4 & -7 \end{bmatrix}$$

0

 \boldsymbol{x}

0

 $\boldsymbol{x} | \boldsymbol{x}$

 $\boldsymbol{x} | \boldsymbol{x}$

 $\boldsymbol{x} | \boldsymbol{x}$

Step 2:
$$\begin{bmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 3 & 4 & -7 \end{bmatrix}$$
 into: $\begin{bmatrix} x \\ 0 \\ 0 \end{bmatrix}$

$$row_1 := row_1 - 4 \times row_2$$
: $row_3 := row_3 - 3 \times row_2$:

TB: 20-22; AB: 1.2.1–1.2.6; GvL 3.{1,3,5} – Systems

3-21

There is now a third step:

To transform:
$$egin{bmatrix} 2 & 0 & 8 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 7 & -7 \end{bmatrix}$$
 into: $egin{bmatrix} x & 0 & 0 & x \\ 0 & x & 0 & x \\ 0 & 0 & x & x \end{bmatrix}$

$$row_1 := row_1 - \frac{8}{7} \times row_3$$
: $row_2 := row_2 - \frac{-1}{7} \times row_3$:

$$\begin{bmatrix} 2 & 0 & 0 & 10 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 7 & -7 \end{bmatrix}$$

Solution:
$$x_3 = -1$$
; $x_2 = -1$; $x_1 = 5$

TB: 20-22; AB: 1.2.1–1.2.6; GvL 3.{1,3,5} – Systems

3-22

ALGORITHM: 3. Gauss-Jordan elimination

```
1. For k = 1 : n Do:
```

2. For
$$i=1:n$$
 and if $i!=k$ Do :

3.
$$piv := a_{ik}/a_{kk}$$

4. For
$$j := k + 1 : n + 1$$
 Do :

$$5. a_{ij} := a_{ij} - piv * a_{kj}$$

➤ Operation count:

$$T = \sum_{k=1}^{n} \sum_{i=1}^{n-1} [1 + \sum_{j=k+1}^{n+1} 2] = \sum_{k=1}^{n-1} \sum_{i=1}^{n-1} (2(n-k) + 3) = \cdots$$

Complete the above calculation. Order of the cost? How does it compare with Gaussian Elimination?

TB: 20-22; AB: 1.2.1–1.2.6; GvL 3.{1,3,5} – Systems

TB: 20-22; AB: 1.2.1–1.2.6; GvL 3.{1,3,5} – Systems

3-23

Gaussian Elimination: Partial Pivoting

Consider again Gaussian Elimination for the linear system

$$\left\{egin{array}{lll} 2x_1+2x_2+4x_3=&2\ x_1+&x_2+&x_3=&1\ x_1+4x_2+6x_3=-5 \end{array}
ight.$$
 Or: $\left[egin{array}{llll} 2&2&4&2\ 1&1&1&1\ 1&4&6&-5 \end{array}
ight]$

$$row_2 := row_2 - \frac{1}{2} \times row_1$$
: $row_3 := row_3 - \frac{1}{2} \times row_1$:

$$\begin{array}{c|cccc} 2 & 2 & 4 & 2 \\ 0 & 0 & -1 & 0 \\ 1 & 4 & 6 & -5 \end{array}$$

Pivot a_{22} is zero. Solution : permute rows 2 and 3:

function x = gaussp(A, b)

x = backsolv(A, A(:, n+1));

$$\begin{bmatrix} 2 & 2 & 4 & 2 \\ 0 & 3 & 4 & -6 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

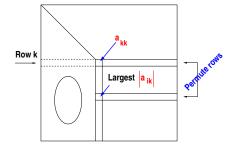
25 TB: 20-22; AB: 1.2.1–1.2.6; GvL 3.{1,3,5} – Systems

3-25

function x = guassp(A, b)solves A x = b by Gaussian elimination with partial pivoting/ n = size(A,1); A = [A,b]for k=1:n-1[t, ip] = max(abs(A(k:n,k)));ip = ip+k-1; %% swap temp = A(k,k:n+1) ;A(k,k:n+1) = A(ip,k:n+1);A(ip,k:n+1) = temp;for i=k+1:n piv = A(i,k) / A(k,k); A(i,k+1:n+1) = A(i,k+1:n+1) - piv*A(k,k+1:n+1);end

Gaussian Elimination with Partial Pivoting

Partial Pivoting



➤ General situation:

Always permute row k with row l such that

$$|a_{lk}| = \max_{i=k,\dots,n} |a_{ik}|$$

➤ More 'stable' algorithm.

3-26

TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} - Systems

3-26

Pivoting and permutation matrices

- A permutation matrix is a matrix obtained from the identity matrix by permuting its rows
- For example for the permutation $\pi = \{3, 1, 4, 2\}$ we obtain

$$P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Important observation: the matrix PA is obtained from A by permuting its rows with the permutation π

$$(PA)_{i,:}=A_{\pi(i),:}$$

TB: 20-22; AB: 1.2.1–1.2.6; GvL 3.{1,3,5} – Systems

3-28

3-27

TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} - Systems

 \mathcal{L}_{09} What is the matrix PA when

$$P = egin{pmatrix} 0 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \end{pmatrix} \;\; A = egin{pmatrix} 1 & 2 & 3 & 4 \ 5 & 6 & 7 & 8 \ 9 & 0 & -1 & 2 \ -3 & 4 & -5 & 6 \end{pmatrix} ?$$

- \triangleright Any permutation matrix is the product of interchange permutations, which only swap two rows of I.
- ightharpoonup Notation: $E_{ij}=$ Identity with rows i and j swapped

3-29 TB: 20-22; AB: 1.2.1–1.2.6; GvL 3.{1,3,5} – Systems

3-29

➤ At each step of G.E. with partial pivoting:

$$M_{k+1}E_{k+1}A_k = A_{k+1}$$

where E_{k+1} encodes a swap of row k+1 with row l>k+1.

Notes: (1) $E_i^{-1} = E_i$ and (2) $M_j^{-1} \times E_{k+1} = E_{k+1} \times \tilde{M}_j^{-1}$ for $k \geq j$, where \tilde{M}_j has a permuted Gauss vector:

$$egin{aligned} (I + v^{(j)} e_j^T) E_{k+1} &= E_{k+1} (I + E_{k+1} v^{(j)} e_j^T) \ &\equiv E_{k+1} (I + ilde{v}^{(j)} e_j^T) \ &\equiv E_{k+1} ilde{M}_i \end{aligned}$$

Here we have used the fact that above row k+1, the permutation matrix E_{k+1} looks just like an identity matrix.

Example: To obtain $\pi = \{3, 1, 4, 2\}$ from $\pi = \{1, 2, 3, 4\}$ – we need to swap $\pi(2) \leftrightarrow \pi(3)$ then $\pi(3) \leftrightarrow \pi(4)$ and finally $\pi(1) \leftrightarrow \pi(2)$. Hence:

$$m{P} = egin{pmatrix} 0 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \end{pmatrix} = m{E}_{1,2} imes m{E}_{3,4} imes m{E}_{2,3}$$

✓ 10 In the previous example where

$$\Rightarrow$$
 A = [1 2 3 4; 5 6 7 8; 9 0 -1 2; -3 4 -5 6]

Matlab gives det(A) = -896. What is det(PA)?

TB: 20-22; AB: 1.2.1–1.2.6; GvL 3.{1,3,5} – Systems

3-30

Result:

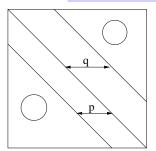
$$egin{aligned} A_0 &= E_1 M_1^{-1} A_1 \ &= E_1 M_1^{-1} E_2 M_2^{-1} A_2 = E_1 E_2 ilde{M}_1^{-1} M_2^{-1} A_2 \ &= E_1 E_2 ilde{M}_1^{-1} M_2^{-1} E_3 M_3^{-1} A_3 \ &= E_1 E_2 E_3 ilde{M}_1^{-1} ilde{M}_2^{-1} M_3^{-1} A_3 \ &= \dots \ &= E_1 \cdots E_{n-1} \ imes ilde{M}_1^{-1} ilde{M}_2^{-1} ilde{M}_2^{-1} ilde{M}_3^{-1} \cdots ilde{M}_{n-1}^{-1} \ ilde{M}_{n-1}^{-1} \ ilde{M}_{n-1}^{-1} \end{array}$$

➤ In the end

$$PA = LU$$
 with $P = E_{n-1} \cdots E_1$

Special case of banded matrices

- Banded matrices arise in many applications
- A has upper bandwidth q if $a_{ij}=0$ for j-i>q
- A has lower bandwidth p if $a_{ij} = 0$ for i j > p



Simplest case: tridiagonal $\triangleright p = q = 1$.

TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} - Systems

First observation: Gaussian elimination (no pivoting) preserves the initial banded form. Consider first step of Gaussian elimination:

2. For
$$i = 2:n$$
 Do:
3. $a_{i1} := a_{i1}/a_{11}$ (pivots)
4. For $j := 2:n$ Do:
5. $a_{ij} := a_{ij} - a_{i1} * a_{1j}$
6. End
7. End

If A has upper bandwidth q and lower bandwidth p then so is the resulting [L/U] matrix. \triangleright Band form is preserved (induction)

✓ Operation count?

TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} - Systems

What happens when partial pivoting is used?

If A has lower bandwidth p, upper bandwidth q, and if Gaussian elimination with partial pivoting is used, then the resulting $oldsymbol{U}$ has upper bandwidth p+q. L has at most p+1 nonzero elements per column (bandedness is lost).

 \triangleright Simplest case: tridiagonal \triangleright p = q = 1.

Example:

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 1 & 0 \\ 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 2 & 1 \end{pmatrix}$$

TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} - Systems