SOLVING LINEAR SYSTEMS OF EQUATIONS

e Background on linear systems

e Gaussian elimination and the Gauss-Jordan algorithms
e The LU factorization

e Gaussian Elimination with pivoting

e Case of banded systems
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Background: Linear systems

The Problem: A is an m X n matrix, and b a vector of R™. Find
x such that:

Axz =10b

» x is the unknown vector, b the right-hand side, and A is the
coefficient matrix

2$1+4$2+4$3:6 244 Ty 6
£E1+5£C2+6£E3:40I’ 156 1) = 4
$1+3m2+ 333:8 131 I3 8
Solution of above system ?
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»  Standard mathematical solution by Cramer’s rule:

x; = det(A;)/ det(A)

A; = matrix obtained by replacing ¢-th column by b.

» Note: This formula is useless in practice beyond n = 3 or
n =4.

Three situations:

1. The matrix A is nonsingular. There is a unique solution given by
x = A"'b.
2. The matrix A is singular and b € Ran(A). There are infinitely

many solutions.

3. The matrix A is singular and b ¢ Ran(A). There are no
solutions.
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20 1 . .
(1) Let A = (O 4) b= (8) . A is nonsingu-

lar » a unique solution x = (0é5) .

(2) Case where A is singular & b € Ran(A):
20 1
6 )
e . 0.5
» infinitely many solutions: x(a) = < o ) YV a.

(3) Let A same as above, but b = (1) .

»  No solutions since 2nd equation cannot be satisfied
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Triangular linear systems

2 4 4\ [z, 2
0 5-2|(z]|=1[1
0 0 2/ \z3 4

»  One equation can be trivially solved: the last one. @3 = 2
» x3 is known we can now solve the 2nd equation:

52, —2x3 =1 — bdxrys —2X2=1 — x5=1

»  Finally 1 can be determined similarly:

2$1+4:B2-|-4£B3:2—) . — X1 = —5H
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ALGORITHM : 1. Back-Substitution algorithm

Fort=mn:—1:1 do:
t .= bl
Forj:'i+1:nd0
} t:=b; — (Qiit1:ms Tit1:n)

t:=%t—a;x; ’
R = b; — an inner product

End
r; = t/aii
End
»  We must require that each a;; # 0

»  QOperation count?
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Column version of back-substitution

Back-Substitution algorithm. Column version

Fory=m:—1:1do:
x; = bj/aj;
Fore =1:53 —1do
bi = b,;—:z:j*aij
End
End

Justify the above algorithm [Show that it does indeed compute
the solution]

» See text for analogous algorithms for lower triangular systems.
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Linear Systems of Equations: Gaussian Eliminatio

» Back to arbitrary linear systems.

Principle of the method: Since triangular systems are easy to
solve, we will transform a linear system into one that is triangular.
Main operation: combine rows so that zeros appear in the required
locations to make the system triangular.

Notation: use a Tableau:

2y + 4xe + 43 = 2 2 4 4 2
x1 + 3xs + 1z = 1 tableau:| 1 3 1|1
L1 —|— 5IB2 —|— 61B3 = —6 1 5 6|—6
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»  Main operation used: scaling and adding rows.

Replace row2 by: row?2 - %*rowl:

Linear Systems of Equations: Gaussian Eliminatio

Go back to original system. Step 1 must transform:

2 4 42 2 4 42 2 4 4 2 T T x|x
1 3 111/ —/0 1 -1 0 )
1 5 6—6 1 5 6 —6 1 3 1 1 |into:] 0 o x|«
1 5 6/—6 0 = x|z
» This is equivalent to:
1 0 0 2 4 4] 2 2 4 4] 2 Tows = TO'le—%XT'O’LUlZ Towsg = ’l"O’ll)g—%X’l‘O’LUli
1
—510X1311:01—10 2 4 4! 2 2 4 4] 2
0O 0 1 1 5 6/—6 1 5 6/—6 01 —-1l0 0 1 —1l0
1 5 6 —6 0o 3 4| -7
»  The left-hand matrix is of the form
0
M:I—verfwith'v: %
0
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» Equivalent to 5 4 4] 2
rows :=rowz —3 Xrowy:— |0 1 —1]0
1 0 O 2 4 4| 2 2 4 4| 2 0 0 I
1
—= 1 O0x/1 3 1/11|=/0 1 —-1|0 )
>
_g 0 1 1 5 6—6 0 3 47 Equivalent to
1 0O O 2 4 4| 2 2 4 4| 2
0 0O 1 O0x 0 1 —-1/0|=/0 1 —-1|0
0 -3 1 0o 3 4| -7 0O O TI—=7
[A,b] — [M A, Myb]; My =TI —vWel; oM = %
2 »  Second transformation is as follows:
0

» New system Ajx = by. Step 2 must now transform:

2 4 4| 2 r T x|
0 1 —-1 0 |into: 0 o x=x
0 3 4| -7 0 0 xzx
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[Al, bl] — [MzAl, Mle] M2 =1 — v(z)eg ’0(2) = 0

w

»  Triangular system » Solve.
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Q Pivot

Row k
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ALGORITHM : 2. Gaussian Elimination

1. Fork=1:m—1 Do:
2. Fort =k +1:n Do:

3. pi'v = aik/akk

4. Foryg:=k+1:n+1Do:
5. Q;; ‘= Q5 — pi'v * Qg

6. End

6. End

7. End

»  Operation count:

n—1 n n+1 n—1 n
T=> Y [+ ) 2/=> > (2(n—k)+3)=..
k=1 i=k+1 j=k+1 k=1 i=k+1

Complete the above calculation. Order of the cost?
314 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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The LU factorization

»  Now ignore the right-hand side from the transformations.

Observation: Gaussian elimination is equivalent to 1 — 1 succes-
sive Gaussian transformations, i.e., multiplications with matrices
of the form M = I — v(k)ef, where the first k components
of v(*) equal zero.

» Set Agp = A
A — M1A0: A1 — M2A1 = A2 — M3A2 = Ag"'
— M, 1Ay 2=A, 1 =U

» Last A = U is an upper triangular matrix.
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» At each step we have: Ap = M,;rllAk_H . Therefore:

AO - Ml_lAl
= M;'M;'A,
= MM, ' M; " A,

—1as—1pg—1 -1
=M "M, Mg ---M, " An_
—1pas—1pr—1 —il
) L = M]. M2 M3 ¢ Mn_l
» Note: L is Lower triangular, A,,_ is upper triangular

» LU decomposition : A = LU
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How to get L?

L=M;"M;'M;"'-.-M,"!

n—1

»  Consider only the first 2 matrices in this product.

» Note M, ' = (I —v®el)™! = (I +vWel). So:
MM, = (I+vWel)(I+vPel) = T+vWel +v@el.
»  Generally,

M1_1M2_1 cen Mk_l =TI+ U(l)elT + v(2)e’§ I v(k’)e;‘g

The L factor is a lower triangular matrix with ones on the

diagonal. Column k of L, contains the multipliers I;; used in
the k-th step of Gaussian elimination.
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A matrix A has an LU decomposition if
det(A(1:k,1:k))#0 for k=1,---,n— 1.
In this case, the determinant of A satisfies:
n
det A = det(U) = Huiz’
i=1

If, in addition, A is nonsingular, then the LU factorization is
unique.
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Practical use: Show how to use the LU factorization to solve
linear systems with the same matrix A and different b's.

244
LU factorization of the matrix A = |1 56 |7
131

Determinant of A?

True or false: “Computing the LU factorization of matrix
A involves more arithmetic operations than solving a linear system
Ax = b by Gaussian elimination”.
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Gauss-Jordan Elimination

Principle of the method: We will now transform the system into
one that is even easier to solve than triangular systems, namely
a diagonal system. The method is very similar to Gaussian
Elimination. It is just a bit more expensive.

Back to original system. Step 1 must transform:

2 4 4 2 T T x|x
1 3 1 1 |into:] 0 o xx
1 5 6/—6 0 = xx

3-20 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems

3-20




rows; := rows—0.5 X row;:

rows := rows—0.5 X rows:

There is now a third step:

2 4 412 2 4 42 2 0 82 z 0 Oz
0 1 —-10 0 1 —-10 To transform: | 0 1 —1| 0 |into:) 0 « Olx
1 5 6/-6 0 3 4|7 00 7-7 0 0 za
2 4 4 2 z 0 =z row; := row; — % X rows. Tows := Tows — _71 X rows:
Step2:/ 0 1 —1 0 |into:| 0 x xx
0 3 4| —7 0 0 =z =x 2 0 010 2 0 010
0 1 —-10 0 1 01
row; := row; —4 X rows: rows := rows— 3 X rows: 0 0 T—7 O 0 7 =7
2 0 8 2 2 0 8 2 _
0 1 —10 01 —10 Solution: 3 = —1; Ty = —1; @1 =5
0 3 4|-7 0 O 77
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ALGORITHM : 3. Gauss-Jordan elimination function x = gaussj (A, b)

1. Fork =1 :mn Do: % function x = gaussj (A, b)
2 Fori=1:mn andifil = k Do : % solves A x = b by Gauss-Jordan elimination
: . : ! ; O e
3. DIV 1= aik/ A n = size(A,1) ;
4. Forj:=k+1:n+1 Do : A = [A,b];
5 e — DI % s for k=i:n
) a;j ‘= Qjj; — PV * Af; for i=1:n
6. End if (i °=k)
6. End piv = A(i,k) / A(k,k) ;
: A(i,k+1:n+1) = A(i,k+1:n+1) - piv*A(k,k+1:n+1);
7. End end
(eind
. _ en
» Operation count: x = AC:,n+1) ./ diag(d) ;

n+1 n—1 n—1

d2l=> > @2n—k) +3)=---

Complete the above calculation. Order of the cost? How does

it compare with Gaussian Elimination?
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r-3 Y+

k=1 =1
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Gaussian Elimination: Partial Pivoting

Consider again Gaussian Elimination for the linear system

2x, + 2x9 + dxz = 2 2 2 4] 2
L1 —|— o —|— 3 = 1 Or:| 1 1 11
Ty + 4332 + 6$3 = -5 1 4 6|—>5

TOWs := TOW> —% X row;: TOows i= rows —% X rows:

2 2 4 2 2 2 4| 2
O 0 -1 0 0O 0 —-1/0
1 4 6/ —5 0o 3 4 —6

Gaussian Elimination with Partial Pivoting

a

Partial Pivoting Kk
Row k ©

@ Largest ‘a ik‘ &

Always permute row k with row I such that

»  General situation:

_ _ _ 4 lawk| = max;—,....n |air]
» Pivot ags is zero. Solution : 2 2 2
ermute rows 2 and 3: 03 4| —6
P ' 0O 0 —-1/0 »  More ‘stable’ algorithm.
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function x = gaussp (A, b) Pivoting and permutation matrices
S sttty
é Zglllxcl'zzsloﬁ i ==gga§§rpgéﬁésli)3m elimination with » A permutation matrix is a matrix obtained from the identity
%‘: partial pivoting/ matrix by permuting its rows
A’;_;_;;;;EA:B_: ____________________________________ » For example for the permutation w = {3, 1,4, 2} we obtain
A = [A,b]
for k=1:n-1
[t, ip] = max(abs(A(k:n,k))); 0010
ip = 1p+k-1 ;
%l swap p_ 100 (1)
temp = A(k,k:n+1) ; 000
0100

A(k,k:n+1) = A(ip,k:n+1);

A(ip,k:n+1) = temp;

for i=k+1:n

piv = A(i,k) / A(k,k) ;

A(i,k+1:n+1) = A(i,k+1:n+1) - pivkA(k,k+1:n+1);
end

end
x = backsolv(A,A(: ,n+1));
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» |mportant observation: the matrix P A is obtained from A by
permuting its rows with the permutation 7

(PA)’L, — Aﬂ'(i),:
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What is the matrix P A when

0010 1 2 3 4
1000 5 6 7 8
— — ?
P = 0001 A= 9 0-12]°
0100 —34 —-56

» Any permutation matrix is the product of interchange permuta-
tions, which only swap two rows of I.

»  Notation: FE;; = |dentity with rows % and 7 swapped
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To obtain m = {3, 1,4, 2} from 7 = {1,2, 3,4}

— we need to swap 7(2) <> 7(3) then w(3) <> 7 (4) and finally
(1) <> 7(2). Hence:

0010

1000
P = 0001 :E1’2XE3’4XE2,3

0100

In the previous example where
> A=[1234;5678;9 0-12; -34-506]

Matlab gives det(A) = —896. What is det(PA)?
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» At each step of G.E. with partial pivoting:
My 1 Ep 1Ay = Ak

where Ej 1 encodes a swap of row k + 1 with row I > k + 1.

> Notes: (1) E; ' = Ejand (2) M; ' X Eyy1 = Ejpa X M

for k > 3, where Mj has a permuted Gauss vector:
(I +vYel)Ex1 = Eppr(I + ErpvWe])
= Epx (I + ﬁ(j)e;‘.r)
= Ek+1Mj

» Here we have used the fact that above row k-+1, the permutation
matrix Ex41 looks just like an identity matrix.
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Result:

Ay = E;M['A,

E\M['E;M;'A; = E\E; M M ' A,
E\E;M['M; 'EsM; ' A3
E\E;EsM['M; 'M; ' A3

= BB,y x M{7M7IM7Y-- MY x A,y

n—1

» |n the end
PA=LUwthP=EF,_,---F;
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Special case of banded matrices

»  Banded matrices arise in many applications
» A has upper bandwidth g if a;; =0 forj —i > g
» A has lower bandwidth p if a;; =0 fore —3 > p

O

Q 2

»  Simplest case: tridiagonal » p =q = 1.
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»  First observation: Gaussian elimination (no pivoting) preserves
the initial banded form. Consider first step of Gaussian elimination:

2 Forz = 2 : n Do:

3. a;1 = a,-l/an (inOtS)
4, Forj :=2:m Do :

5 Q;; ‘= Q55 — Q41 * (257
6 End

7 End

» If A has upper bandwidth g and lower bandwidth p then so is
the resulting [L /U] matrix. » Band form is preserved (induction)

Operation count?
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What happens when partial pivoting is used?

If A has lower bandwidth p, upper bandwidth g, and if Gaussian
elimination with partial pivoting is used, then the resulting U has
upper bandwidth p 4+ q. L has at most p + 1 nonzero elements per
column (bandedness is lost).

»  Simplest case: tridiagonal » p =q = 1.

11000
21100
A=]102110
00211
00021
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