
SOLVING LINEAR SYSTEMS OF EQUATIONS

• Background on linear systems

• Gaussian elimination and the Gauss-Jordan algorithms

• The LU factorization

• Gaussian Elimination with pivoting

• Case of banded systems
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Background: Linear systems

The Problem: A is an n×n matrix, and b a vector of Rn. Find
x such that:

Ax = b

ä x is the unknown vector, b the right-hand side, and A is the
coefficient matrix

Example: 2x1 + 4x2 + 4x3 = 6
x1 + 5x2 + 6x3 = 4
x1 + 3x2 + x3 = 8

or

2 4 4
1 5 6
1 3 1

x1

x2

x3

 =

6
4
8


-1 Solution of above system ?
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ä Standard mathematical solution by Cramer’s rule:

xi = det(Ai)/ det(A)

Ai = matrix obtained by replacing i-th column by b.

ä Note: This formula is useless in practice beyond n = 3 or
n = 4.

Three situations:

1. The matrix A is nonsingular. There is a unique solution given by
x = A−1b.

2. The matrix A is singular and b ∈ Ran(A). There are infinitely
many solutions.

3. The matrix A is singular and b /∈ Ran(A). There are no
solutions.
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Example: (1) Let A =

(
2 0
0 4

)
b =

(
1
8

)
. A is nonsingu-

lar ä a unique solution x =

(
0.5
2

)
.

Example: (2) Case where A is singular & b ∈ Ran(A):

A =

(
2 0
0 0

)
, b =

(
1
0

)
.

ä infinitely many solutions: x(α) =

(
0.5
α

)
∀ α.

Example: (3) Let A same as above, but b =

(
1
1

)
.

ä No solutions since 2nd equation cannot be satisfied
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Triangular linear systems

Example: 2 4 4
0 5 −2
0 0 2

x1

x2

x3

 =

2
1
4


ä One equation can be trivially solved: the last one. x3 = 2

ä x3 is known we can now solve the 2nd equation:

5x2 − 2x3 = 1 → 5x2 − 2× 2 = 1 → x2 = 1

ä Finally x1 can be determined similarly:

2x1 + 4x2 + 4x3 = 2→ ... → x1 = −5
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ALGORITHM : 1 Back-Substitution algorithm

For i = n : −1 : 1 do:
t := bi
For j = i+ 1 : n do }

t := bi − (ai,i+1:n, xi+1:n)
= bi − an inner product

t := t− aijxj
End
xi = t/aii

End

ä We must require that each aii 6= 0

ä Operation count?
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Column version of back-substitution

Back-Substitution algorithm. Column version

For j = n : −1 : 1 do:
xj = bj/ajj
For i = 1 : j − 1 do
bi := bi − xj ∗ aij

End
End

-2 Justify the above algorithm [Show that it does indeed compute
the solution]

ä See text for analogous algorithms for lower triangular systems.
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Linear Systems of Equations: Gaussian Elimination

ä Back to arbitrary linear systems.

Principle of the method: Since triangular systems are easy to
solve, we will transform a linear system into one that is triangular.
Main operation: combine rows so that zeros appear in the required
locations to make the system triangular.

Notation: use a Tableau:

 2x1 + 4x2 + 4x3 = 2
x1 + 3x2 + 1x3 = 1
x1 + 5x2 + 6x3 = −6

tableau:
2 4 4 2
1 3 1 1
1 5 6 −6
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ä Main operation used: scaling and adding rows.

Example: Replace row2 by: row2 - 1
2
*row1:

2 4 4 2
1 3 1 1
1 5 6 −6

→
2 4 4 2
0 1 −1 0
1 5 6 −6

ä This is equivalent to:

1 0 0
−1

2
1 0

0 0 1
×

2 4 4 2
1 3 1 1
1 5 6 −6

=
2 4 4 2
0 1 −1 0
1 5 6 −6

ä The left-hand matrix is of the form

M = I − veT1 with v =

0
1
2
0


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Linear Systems of Equations: Gaussian Elimination

Go back to original system. Step 1 must transform:

2 4 4 2
1 3 1 1
1 5 6 −6

into:
x x x x
0 x x x
0 x x x

row2 := row2− 1
2
× row1: row3 := row3− 1

2
× row1:

2 4 4 2
0 1 −1 0
1 5 6 −6

2 4 4 2
0 1 −1 0
0 3 4 −7
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ä Equivalent to

1 0 0
−1

2
1 0

−1
2

0 1
×

2 4 4 2
1 3 1 1
1 5 6 −6

=
2 4 4 2
0 1 −1 0
0 3 4 −7

[A, b]→ [M1A,M1b]; M1 = I − v(1)eT1 ; v(1) =

0
1
2
1
2


ä New system A1x = b1. Step 2 must now transform:

2 4 4 2
0 1 −1 0
0 3 4 −7

into:
x x x x
0 x x x
0 0 x x
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row3 := row3 − 3× row2 :→
2 4 4 2
0 1 −1 0
0 0 7 −7

ä Equivalent to

1 0 0
0 1 0
0 −3 1

×
2 4 4 2
0 1 −1 0
0 3 4 −7

=
2 4 4 2
0 1 −1 0
0 0 7 −7

ä Second transformation is as follows:

[A1, b1]→ [M2A1,M2b1]M2 = I − v(2)eT2 v
(2) =

0
0
3


ä Triangular system ä Solve.
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Row k

Pivot 

A    =
k
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ALGORITHM : 2 Gaussian Elimination

1. For k = 1 : n− 1 Do:
2. For i = k + 1 : n Do:
3. piv := aik/akk
4. For j := k + 1 : n+ 1 Do :
5. aij := aij − piv ∗ akj
6. End
6. End
7. End

ä Operation count:

T =

n−1∑
k=1

n∑
i=k+1

[1+

n+1∑
j=k+1

2] =

n−1∑
k=1

n∑
i=k+1

(2(n−k)+3) = ...

-3 Complete the above calculation. Order of the cost?
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The LU factorization

ä Now ignore the right-hand side from the transformations.

Observation: Gaussian elimination is equivalent to n− 1 succes-
sive Gaussian transformations, i.e., multiplications with matrices
of the form Mk = I − v(k)eTk , where the first k components
of v(k) equal zero.

ä Set A0 ≡ A

A→M1A0 = A1 → M2A1 = A2→M3A2 = A3 · · ·
→ Mn−1An−2 = An−1 ≡ U

ä Last Ak ≡ U is an upper triangular matrix.
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ä At each step we have: Ak = M−1
k+1Ak+1 . Therefore:

A0 = M−1
1 A1

= M−1
1 M−1

2 A2

= M−1
1 M−1

2 M−1
3 A3

= . . .

= M−1
1 M−1

2 M−1
3 · · ·M

−1
n−1An−1

ä L = M−1
1 M−1

2 M−1
3 · · ·M

−1
n−1

ä Note: L is Lower triangular, An−1 is upper triangular

ä LU decomposition : A = LU
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How to get L?

L = M−1
1 M−1

2 M−1
3 · · ·M

−1
n−1

ä Consider only the first 2 matrices in this product.

ä Note M−1
k = (I − v(k)eTk )−1 = (I + v(k)eTk ). So:

M−1
1 M−1

2 = (I+v(1)eT1 )(I+v
(2)eT2 ) = I+v(1)eT1 +v

(2)eT2 .

ä Generally,

M−1
1 M−1

2 · · ·M
−1
k = I + v(1)eT1 + v(2)eT2 + · · · v(k)eTk

The L factor is a lower triangular matrix with ones on the
diagonal. Column k of L, contains the multipliers lik used in
the k-th step of Gaussian elimination.
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A matrix A has an LU decomposition if

det(A(1 : k, 1 : k)) 6= 0 for k = 1, · · · , n− 1.

In this case, the determinant of A satisfies:

detA = det(U) =

n∏
i=1

uii

If, in addition, A is nonsingular, then the LU factorization is
unique.
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-4 Practical use: Show how to use the LU factorization to solve
linear systems with the same matrix A and different b’s.

-5 LU factorization of the matrix A =

2 4 4
1 5 6
1 3 1

?

-6 Determinant of A?

-7 True or false: “Computing the LU factorization of matrix
A involves more arithmetic operations than solving a linear system
Ax = b by Gaussian elimination”.
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Gauss-Jordan Elimination

Principle of the method: We will now transform the system into
one that is even easier to solve than triangular systems, namely
a diagonal system. The method is very similar to Gaussian
Elimination. It is just a bit more expensive.

Back to original system. Step 1 must transform:

2 4 4 2
1 3 1 1
1 5 6 −6

into:
x x x x
0 x x x
0 x x x
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row2 := row2−0.5×row1: row3 := row3−0.5×row1:

2 4 4 2
0 1 −1 0
1 5 6 −6

2 4 4 2
0 1 −1 0
0 3 4 −7

Step 2:
2 4 4 2
0 1 −1 0
0 3 4 −7

into:
x 0 x x
0 x x x
0 0 x x

row1 := row1−4× row2: row3 := row3−3× row2:

2 0 8 2
0 1 −1 0
0 3 4 −7

2 0 8 2
0 1 −1 0
0 0 7 −7
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There is now a third step:

To transform:
2 0 8 2
0 1 −1 0
0 0 7 −7

into:
x 0 0 x
0 x 0 x
0 0 x x

row1 := row1− 8
7
× row3: row2 := row2− −17 × row3:

2 0 0 10
0 1 −1 0
0 0 7 −7

2 0 0 10
0 1 0 1
0 0 7 −7

Solution: x3 = −1; x2 = −1; x1 = 5
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ALGORITHM : 3 Gauss-Jordan elimination

1. For k = 1 : n Do:
2. For i = 1 : n and if i! = k Do :
3. piv := aik/akk
4. For j := k + 1 : n+ 1 Do :
5. aij := aij − piv ∗ akj
6. End
6. End
7. End

ä Operation count:

T =

n∑
k=1

n−1∑
i=1

[1 +

n+1∑
j=k+1

2] =

n−1∑
k=1

n−1∑
i=1

(2(n− k) + 3) = · · ·

-8 Complete the above calculation. Order of the cost? How does
it compare with Gaussian Elimination?
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function x = gaussj (A, b)
%---------------------------------------------------
% function x = gaussj (A, b)
% solves A x = b by Gauss-Jordan elimination
%---------------------------------------------------
n = size(A,1) ;
A = [A,b];
for k=1:n

for i=1:n
if (i ~= k)

piv = A(i,k) / A(k,k) ;
A(i,k+1:n+1) = A(i,k+1:n+1) - piv*A(k,k+1:n+1);

end
end

end
x = A(:,n+1) ./ diag(A) ;
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Gaussian Elimination: Partial Pivoting

Consider again Gaussian Elimination for the linear system 2x1 + 2x2 + 4x3 = 2
x1 + x2 + x3 = 1
x1 + 4x2 + 6x3 = −5

Or:
2 2 4 2
1 1 1 1
1 4 6 −5

row2 := row2− 1
2
× row1: row3 := row3− 1

2
× row1:

2 2 4 2
0 0 −1 0
1 4 6 −5

2 2 4 2
0 0 −1 0
0 3 4 −6

ä Pivot a22 is zero. Solution :
permute rows 2 and 3:

2 2 4 2
0 3 4 −6
0 0 −1 0
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Gaussian Elimination with Partial Pivoting

Partial Pivoting

ä General situation:

 
Largest a ik

Per
m

ute
 ro

ws

a 
kk

Row k

Always permute row k with row l such that

|alk| = maxi=k,...,n |aik|

ä More ‘stable’ algorithm.
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function x = gaussp (A, b)
%---------------------------------------------------
% function x = guassp (A, b)
% solves A x = b by Gaussian elimination with
% partial pivoting/
%---------------------------------------------------
n = size(A,1) ;
A = [A,b]
for k=1:n-1

[t, ip] = max(abs(A(k:n,k)));
ip = ip+k-1 ;

%% swap
temp = A(k,k:n+1) ;
A(k,k:n+1) = A(ip,k:n+1);
A(ip,k:n+1) = temp;
for i=k+1:n
piv = A(i,k) / A(k,k) ;
A(i,k+1:n+1) = A(i,k+1:n+1) - piv*A(k,k+1:n+1);

end
end
x = backsolv(A,A(:,n+1));
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Pivoting and permutation matrices

ä A permutation matrix is a matrix obtained from the identity
matrix by permuting its rows

ä For example for the permutation π = {3, 1, 4, 2} we obtain

P =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0


ä Important observation: the matrix PA is obtained from A by
permuting its rows with the permutation π

(PA)i,: = Aπ(i),:
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-9 What is the matrix PA when

P =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 A =


1 2 3 4
5 6 7 8
9 0 −1 2
−3 4 −5 6

 ?

ä Any permutation matrix is the product of interchange permuta-
tions, which only swap two rows of I.

ä Notation: Eij = Identity with rows i and j swapped
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Example: To obtain π = {3, 1, 4, 2} from π = {1, 2, 3, 4}
– we need to swap π(2)↔ π(3) then π(3)↔ π(4) and finally
π(1)↔ π(2). Hence:

P =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 = E1,2 × E3,4 × E2,3

-10 In the previous example where

>> A = [ 1 2 3 4; 5 6 7 8; 9 0 -1 2 ; -3 4 -5 6]

Matlab gives det(A) = −896. What is det(PA)?
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ä At each step of G.E. with partial pivoting:

Mk+1Ek+1Ak = Ak+1

where Ek+1 encodes a swap of row k + 1 with row l > k + 1.

ä Notes: (1)E−1i = Ei and (2)M−1
j ×Ek+1 = Ek+1×M̃j

−1

for k ≥ j, where M̃j has a permuted Gauss vector:

(I + v(j)eTj )Ek+1 = Ek+1(I + Ek+1v
(j)eTj )

≡ Ek+1(I + ṽ(j)eTj )

≡ Ek+1M̃j

ä Here we have used the fact that above row k+1, the permutation
matrix Ek+1 looks just like an identity matrix.

3-31 TB: 20-22; AB: 1.2.1–1.2.6; GvL 3.{1,3,5} – Systems

3-31



Result:

A0 = E1M
−1
1 A1

= E1M
−1
1 E2M

−1
2 A2 = E1E2M̃

−1
1 M−1

2 A2

= E1E2M̃
−1
1 M−1

2 E3M
−1
3 A3

= E1E2E3M̃
−1
1 M̃−1

2 M−1
3 A3

= . . .

= E1 · · ·En−1 × M̃−1
1 M̃−1

2 M̃−1
3 · · · M̃

−1
n−1 × An−1

ä In the end

PA = LU with P = En−1 · · ·E1
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Special case of banded matrices

ä Banded matrices arise in many applications

ä A has upper bandwidth q if aij = 0 for j − i > q

ä A has lower bandwidth p if aij = 0 for i− j > p

q

p

ä Simplest case: tridiagonal ä p = q = 1.

3-33 TB: 20-22; AB: 1.2.1–1.2.6; GvL 3.{1,3,5} – Systems

3-33



ä First observation: Gaussian elimination (no pivoting) preserves
the initial banded form. Consider first step of Gaussian elimination:

2. For i = 2 : n Do:
3. ai1 := ai1/a11 (pivots)
4. For j := 2 : n Do :
5. aij := aij − ai1 ∗ a1j

6. End
7. End

ä If A has upper bandwidth q and lower bandwidth p then so is
the resulting [L/U ] matrix. ä Band form is preserved (induction)

-11 Operation count?

3-34 TB: 20-22; AB: 1.2.1–1.2.6; GvL 3.{1,3,5} – Systems

3-34



What happens when partial pivoting is used?

If A has lower bandwidth p, upper bandwidth q, and if Gaussian
elimination with partial pivoting is used, then the resulting U has
upper bandwidth p+ q. L has at most p+1 nonzero elements per
column (bandedness is lost).

ä Simplest case: tridiagonal ä p = q = 1.

Example:

A =


1 1 0 0 0
2 1 1 0 0
0 2 1 1 0
0 0 2 1 1
0 0 0 2 1


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