SOLVING LINEAR SYSTEMS OF EQUATIONS

e Background on linear systems

e Gaussian elimination and the Gauss-Jordan algorithms
e The LU factorization

e Gaussian Elimination with pivoting

e Case of banded systems
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Background: Linear systems

The Problem: A is an n X n matrix, and b a vector of R™. Find
x such that:

Ax =0b

» x is the unknown vector, b the right-hand side, and A is the
coefficient matrix

Example:
2w1+4w2—|—4w3:6 244 X1 §)
€B1—|—5ZB2—|—6€E3:4 or 156 4 D) — 4
331—|—3332—|— 333:8 131 I3 8

#91| Solution of above system 7

3-2 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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»  Standard mathematical solution by Cramer’s rule:

x; = det(A;)/ det(A)

A; = matrix obtained by replacing 2-th column by b.

» Note: This formula is useless in practice beyond n = 3 or
n = 4.

Three situations: I

1. The matrix A is nonsingular. There is a unique solution given by

x = A1b

2. The matrix A is singular and b € Ran(A). There are infinitely
many solutions.

3. The matrix A is singular and b € Ran(A). There are no

solutions.

3-3 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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Example: | (1) Let A = (2 O) b = <1> . A is nonsingu-

lar » a unique solution & = (O;) :

Example: | (2) Case where A is singular & b € Ran(A):

= (22) - (0)

» infinitely many solutions: x(a) = <O°5> V a.

(87

Example: |(3) Let A same as above, but b = (1) :

» No solutions since 2nd equation cannot be satisfied

3-4 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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Triangular linear systems

Example:

I 2
4 i) = 1
I3 4

»  One equation can be trivially solved: the last one. x5 = 2

»  x3 is known we can now solve the 2nd equation:

9Ly —2x3 =1 — B3 —2X2=1 — x3=1

»  Finally &1 can be determined similarly:

21 + 4o + 43 = 2 — ...

3-5

— $1:—5

TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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ALGORITHM : 1. Back-Substitution algorithm

fFort =n : —1:1 do:
t::bi

For7 =1+ 1 :n do
J } t:=0b; — (ai,i—l—lznv CEz‘—|—1:n)

t e — t — Qs .
ij L — b; — an inner product

End
Xr;, = t/aii
End
»  \We must require that each a;; # 0

»  QOperation count?

3-6 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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Column version of back-substitution

Back-Substitution algorithm. Column version

Forg =n:—1:1 do:
rj = bj/aj;
Fore =1:7 —1do
bi = bi—a:j*a,ij
End
End

#n,| Justify the above algorithm [Show that it does indeed compute
the solution]

» See text for analogous algorithms for lower triangular systems.

3-7 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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Linear Systems of Equations: Gaussian Eliminatio

» Back to arbitrary linear systems.

Principle of the method: Since triangular systems are easy to
solve, we will transform a linear system into one that is triangular.
Main operation: combine rows so that zeros appear in the required
locations to make the system triangular.

Notation: use a Tableau:

21 + 4xo + 43 = 2 2 4 4 2
xr1 + 3xe + 1lxrg = 1 tableau:'' 1 3 1 1
X1 —I— 5.’,62 —I— 6(133 = —0 1 5 6 —6

3-8 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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»  Main operation used: scaling and adding rows.

Example: | Replace row2 by: row2 - ~*rowl:

2
2 4 4 2 2 4 4 2
1 3 11 — 0 1 —1 0
1 5 6/ —6 1 5 6 —6
» This is equivalent to:
1 0 O 2 4 4 2 2 4 4 2
-3 1 0x 1 3 11/=10 1 —-1/0
0O 0 1 1 5 6/ —6 1 5 6 —6
» The left-hand matrix is of the form
0
M=I—verfwithfv: %
0

3-9 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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Linear Systems of Equations: Gaussian Eliminatio

Go back to original system. Step 1 must transform:

1
1

2 4 4
3
5 6

1

2

—6

Into:

ToOws := TOW9 — % X rown:

3-10

2 4
0 1
1 5

4
—1
6

2
0
—6

TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems

= Tows —% X TOws:

r T X X

0O = xx

0 = xx
rows

2 4 4| 2

O 1 -1 0

0 3 41 —T
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»  Equivalent to

DN [ =D | =t e

= O

- o O
X

— =N

Ot W =~

Y =
ek

2 4 4] 2
O 1 -1 0
0 3 4 =7

[A, b] —> [MlA, Mlb], Ml — I — ’U(l)ef; ’U(l) —

» New system Ai;x = by. Step 2 must now transform:

2 4
0 1
0 3

4
—1
4

2
0
—7

Into:

xr

0
0

I

T
0

xIr
xXr
xr

xr
xXr
xXr
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rows := rows — 3 X rows; :

»  Equivalent to

—

1
0
0

0
1
—3

0
0
1

2
0
0

2

0 =

—7

»  Second transformation is as follows:

2 4 4| 2
O 1 -1 0
0O O 7T =7
2 4 4] 2
O 1 —1 0
0O O 7 =7

[Al, bl] — [M2A17 Mzbl] M2 p— I — fv(z)eg ’U(z) —

»  Triangular system » Solve.

3-12
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Q Pivot
Rowk | N

>
o
1

3-13 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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ALGORITHM : 2. Gaussian Elimination

1. Fork=1:n —1 Do:
2. Fortr =k +1:n Do:

3. p’i’U = aik/akk

4, Forg:=k+1:n+1 Do :
5. Q;; = Az — pi’v * A ;

6. End

6. End

/.

End

»  QOperation count:

n—1 n n+1 n—1 n
T=>» » 1+ ) 2= > (2(n—k)+3)=...
k=1 1=k+1 J=k+1 k=1 1=k+1

#13] Complete the above calculation. Order of the cost?
3-14 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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The LU factorization

»  Now ignore the right-hand side from the transformations.

Observation: Gaussian elimination is equivalent to n — 1 succes-
sive Gaussian transformations, i.e., multiplications with matrices
of the form M; = I — v(k)ef, where the first & components
of v(¥) equal zero.

»  Set A()EA
A—)MlA():Al — M2A1 :Az—)M3A2:A3...
— M, 1Ay 2=A, 1 =U

» Last Ap = U is an upper triangular matrix.

3-15 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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» At each step we have: A = M,;rllAkH . Therefore:

Ay = M;'A,
= M, 'M,;'A,
M. 'M; "M A;

= My M, M- M2 Ay
> L=M_"M,"M;"' ..M "
» Note: L is Lower triangular, A,,_1 is upper triangular
» LU decomposition : A = LU

3-16 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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How to get L?

L=M;"M;" Mg"---M,,

»  Consider only the first 2 matrices in this product.

» Note M, ' = (I —vWel)™! = (I + vWel). So:

M; "My = (I+vWel)(I+vPel) = T+vWMel +v@el.
»  Generally,

Ml_le_l e Mk—l = I+ v(l)e’{ 4 ’v(z)eg 4o v("’)ef

The L factor is a lower triangular matrix with ones on the

diagonal. Column k of L, contains the multipliers l;; used in
the k-th step of Gaussian elimination.

3-17 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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A matrix A has an LU decomposition if
det(A(1:k,1:k))#0 for k=1,--+,n—1.
In this case, the determinant of A satisfies:
det A = det(U) = Hum
i=1

If, in addition, A is nonsingular, then the LU factorization is
unique.

3-18 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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#y

Practical use: Show how to use the LU factorization to solve

linear systems with the same matrix A and different b’s.

&5

Zal

#n7

244
LU factorization of the matrix A= |1 5 6 |?
131

Determinant of A7

True or false: “Computing the LU factorization of matrix

A involves more arithmetic operations than solving a linear system
Ax = b by Gaussian elimination” .

3-19

TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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Gauss-Jordan FElimination

Principle of the method: We will now transform the system into
one that is even easier to solve than triangular systems, namely
a diagonal system. The method is very similar to Gaussian
Elimination. It is just a bit more expensive.

Back to original system. Step 1 must transform:

2 4 4 2 r T x|\
1 3 1 1 into: 0 o xx
1 5 6 —606 O = xx

3-20 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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rows :— row,—0.9 Xrowy: rows:= rows—0.5Xrows:
2 4 4| 2 2 4 4| 2
O 1 -1 0 O 1 -1 0
1 5 6 —6 0O 3 4| -7
2 4 4| 2 x 0 xx
Step2: 0 1 —1 0 into: 0 o =xx
0O 3 4| —7 0O 0 x|z
row; := row; — 4 X rows: ToOows := rowsz— 3 X rows:
2 0 8 2 2 0 8 2
O 1 -1 0 O 1 -1 0
0O 3 4 -7 O O 7 =7

3-21
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There is now a third step:

2 0 8 2 r 0 Owx
Totransform: 0 1 —1 0 into:' 0 = 0 x
0O O 7T =7 0O 0 =z x

row; := row; — g X rows. Tows := rows; — _71 X rows:

2 0 0 10 2 0 010

O 1 —-1 0 0O 1 01

0 O T =7 O 0 7-7
Solution: €3 = —1; 3 = —1; ;1 = 5

3-22 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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ALGORITHM : 3. Gauss-Jordan elimination

1. Fork =1 : n Do:

2. Fore =1 :m andift! = k Do :
3. pi’v = aik/akk

4. Forg :=k+1:n+1Do:
5. A;; «— Q35 — p’i’U * A4

6. End

6. End

/.

End

> Operation count:

n — n+1 n—1 n—1
T — L+ D> 2=) > 2(n—k)+3)=---
k=1 i=1 j=k+1 k=1 i=1

#15] Complete the above calculation. Order of the cost? How does

it compare with Gaussian Elimination?
3-23 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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function x = gaussj (A, b)

%» function x = gaussj (A, b)
% solves A x = b by Gauss-Jordan elimination
T —
n = size(A,1) ;
A = [A,b];
for k=1:n
for 1=1:n
if (i "= k)
piv = A(i,k) / A(k,k) ;
A(i,k+1:n+1) = A(i,k+1:n+1) - piv*A(k,k+1:n+1);
end
end
end

x = A(:,n+1) ./ diag(hd) ;

3-24 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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Gaussian Elimination: Partial Pivoting
Consider again Gaussian Elimination for the linear system

2x1 + 2x2 + 43 = 2 2 2 4 2
X1 —I— I —I— rg = 1 Or:| 1 1 1] 1
X1 —+ 4%2 -+ 6%3 = —9 1 4 6/—5

Tows, :— TOW> —% X rowi. TOWs :=— rows —% X Tows:

2 2 4 2 2 2 4 2

O 0 —-1 0 O 0 -1 0

1 4 6 —5 0O 3 4 —6

» Pivot aqy is zero. Solution : 2 2 1) 2
permute rows 2 and 3: 03 4—6
O 0 -1 0

3-25 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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Gaussian Elimination with Partial Pivoting

Partial Pivoting | Tk
Row k

Largest ‘a ik‘

»  General situation:

Always permute row k with row I such that

|alk| — IMaX;—kg,....,n |aik|
»  More ‘stable’ algorithm.

3-26 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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function x = gaussp (A, b)

% ___________________________________________________
%» function x = guassp (A, b)

%» solves A x = b by Gaussian elimination with
% partial pivoting/
f—————— . ——_—————————————— — — ———

n = size(A,1) ;

A= [A,D

for k=1:n-1
[t, ip] = max(abs(A(k:n,k)));
ip = 1p+k-1 ;

bl SWap
temp = A(k,k:n+1) ;
A(k,k:n+1) = A(ip,k:n+1);
A(ip,k:n+1) = temp;
for i=k+1:n
piv = A(i,k) / A(k,k) ;
A(i,k+1:n+1) = A(i,k+1:n+1) - piv*A(k,k+1l:n+1);
end

end
x = backsolv(A,A(:,n+1));

3-27 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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Piwvoting and permutation matrices

>

A permutation matrix is a matrix obtained from the identity

matrix by permuting its rows

»  For example for the permutation m = {3, 1,4, 2} we obtain

>

(001 0)

1000
0001

\0100)/

Important observation: the matrix P A is obtained from A by

permuting its rows with the permutation 7

3-28

(PA)Z, — Aﬂ'(i),:

TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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#19| What is the matrix P A when

(0010\ /1234\
1000 5 6 7 8
P=10001]| 4= 90 0-12|"

\0100) \—34 —56)

» Any permutation matrix is the product of interchange permuta-
tions, which only swap two rows of I.

»  Notation: E;; = Identity with rows ¢z and 7 swapped

3-29 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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Example: | Toobtainwm = {3,1,4,2} fromw = {1,2, 3,4}

— we need to swap 7(2) <> w(3) then w(3) <> ®(4) and finally
(1) <> 7(2). Hence:

#1010

(0010\
1000

P = 0001 :E1,2XE3,4XE2’3

\0 100/

In the previous example where

> A=[01234,5678;9 0-12,; -34-56]

Matlab gives det(A) = —896. What is det(PA)?

3-30
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» At each step of G.E. with partial pivoting:
My 1By 1Ay = Ak

where Ej 1 encodes a swap of row k£ + 1 with row I > k + 1.

» Notes: (1) E; ' = E; and (2) Mj_1 X Ery1 = Epyq1 X Mj_l

for kK > 3, where Mj has a permuted Gauss vector:

(I +vVel)Eryy = Epa(I + E,mv(j)eg“ )
Epp1(I+9Yel)
Eyy1M;

» Here we have used the fact that above row k-+1, the permutation
matrix Ey 1 looks just like an identity matrix.

3-31 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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Result:

Ay = E{M; A,

= EM['E;M;'Ay = E\E;M['M; ' A,

— ElEng_le_lEgMg_lAg

— ElEzEng_lMglMg_lAg

— By Bny X MONGNG - MY X A
» |n the end

PA:LUWithP:En_1°°°E1

3-32 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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Special case of banded matrices

» Banded matrices arise in many applications
» A has upper bandwidth q if a;; =0forg —1 > g
» A has lower bandwidth p if a;; =0 fort — 3 > p

O

() e

»  Simplest case: tridiagonal » p =q = 1.

3-33 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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»  First observation: Gaussian elimination (no pivoting) preserves
the initial banded form. Consider first step of Gaussian elimination:

NSO W

Forz = 2 : n Do:
a;1 = ail/all (inOtS)
For 3 :=2 :n Do :
a;; -— aA;; — Q41 * ai
End
End

» |f A has upper bandwidth g and lower bandwidth p then so is
the resulting [L /U] matrix. » Band form is preserved (induction)

011

3-34
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TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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What happens when partial pivoting is used? \

If A has lower bandwidth p, upper bandwidth g, and if Gaussian
elimination with partial pivoting is used, then the resulting U has
upper bandwidth p + g. L has at most p + 1 nonzero elements per
column (bandedness is lost).

»  Simplest case: tridiagonal » p =q = 1.

Example:

(11000\
21100
A=]02110
00211
\00021)

3-35 TB: 20-22; AB: 1.2.1-1.2.6; GvL 3.{1,3,5} — Systems
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