

2-4

Property:Limit of
$$||x||_p$$
 when $p \to \infty$ exists: $\lim_{p\to\infty} ||x||_p = \max_{i=1}^n |x_i|$ $here = \max_{$

Solution: We need to show that we can make ||y|| arbitrarily close to ||x||by making y 'close' enough to x, where 'close' is measured in terms of the infinity norm distance $d(x,y) = \|x-y\|_\infty$. Define u = x-y and write u in the canonocal basis as $u = \sum_{i=1}^n \delta_i e_i$. Then:

2-5

$$\|u\| = \|\sum_{i=1}^n \delta_i e_i\| \le \sum_{i=1}^n |\delta_i| \; \|e_i\| \le \max |\delta_i| \sum_{i=1}^n \|e_i\|$$

Setting $M = \sum_{i=1}^n \|e_i\|$ we get $\|\|u\| \leq M \max |\delta_i| = M \|x-y\|_\infty$

Let ϵ be given and take x,y such that $\|x-y\|_\infty \leq \frac{\epsilon}{M}.$ Then, by using the second triangle inequality we obtain:

$$\|\|x\|-\|y\|\|\leq \|x-y\|\leq M\max\delta_i\leq Mrac{\epsilon}{M}=\epsilon$$

This means that we can make ||y|| arbitrarily close to ||x|| by making y close enough to x in the sense of the defined metric. Therefore $\|.\|$ is continuous. \Box

TB 3; GvL 2.2-2.3; AB: 1.1.7 - Norms

Equivalence of norms:

In finite dimensional spaces $(\mathbb{R}^n, \mathbb{C}^n, ..)$ all norms are 'equivalent': if ϕ_1 and ϕ_2 are two norms then there exists positive constants α, β such that,

2-6

$$eta \phi_2(x) \leq \phi_1(x) \leq lpha \phi_2(x)$$

How can you prove this result? [Hint: Show for $\phi_2 = \|.\|_{\infty}$]

- We can bound one norm in terms of any other norm.
- 🔼 Show that for any x: $rac{1}{\sqrt{n}}\|x\|_1 \leq \|x\|_2 \leq \|x\|_1$

Zug What are the "unit balls" $B_p = \{x \mid \|x\|_p \leq 1\}$ associated with the norms $\|.\|_p$ for $p=1,2,\infty$, in \mathbb{R}^2 ?

2-8

2-7

TB 3; GvL 2.2-2.3; AB: 1.1.7 - Norms

Convergence of vector sequences

A sequence of vectors $x^{(k)}$, $k = 1, \ldots, \infty$ converges to a vector x with respect to the norm $\|.\|$ if, by definition,

$$\lim_{k
ightarrow\infty}\|x^{(k)}-x\|=0$$

b Important point: because all norms in \mathbb{R}^n are equivalent, the convergence of $x^{(k)}$ w.r.t. a given norm implies convergence w.r.t. any other norm.

Notation:

$$\lim_{k o\infty}x^{(k)}=x$$

2-9

TB 3; GvL 2.2-2.3; AB: 1.1.7 - Norms

Matrix norms

> Can define matrix norms by considering $m \times n$ matrices as vectors in \mathbb{R}^{mn} . These norms satisfy the usual properties of vector norms, i.e.,

1. $||A|| \ge 0, \forall A \in \mathbb{C}^{m \times n}$, and ||A|| = 0 iff A = 02. $||\alpha A|| = |\alpha|||A||, \forall A \in \mathbb{C}^{m \times n}, \forall \alpha \in \mathbb{C}$ 3. $||A + B|| \le ||A|| + ||B||, \forall A, B \in \mathbb{C}^{m \times n}$.

► However, these will lack (in general) the right properties for composition of operators (product of matrices).

2-11

> The case of $\|\cdot\|_2$ yields the Frobenius norm of matrices.

Example: The sequence

$$x^{(k)} = egin{pmatrix} 1+1/k \ rac{k}{k+\log_2 k} \ rac{1}{k} \end{pmatrix}$$

converges to

 $x = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$

Note: Convergence of $x^{(k)}$ to x is the same as the convergence of each individual component $x_i^{(k)}$ of $x^{(k)}$ to the corresoponding component x_i of x.

> Given a matrix **A** in $\mathbb{C}^{m \times n}$, define the set of matrix norms

2-10

$$\|oldsymbol{A}\|_p = \max_{x\in\mathbb{C}^n,\;x
eq 0} rac{\|oldsymbol{A}x\|_p}{\|oldsymbol{x}\|_p}.$$

► These norms satisfy the usual properties of vector norms (see previous page).

- > The matrix norm $\|\cdot\|_p$ is induced by the vector norm $\|\cdot\|_p$.
- > Again, important cases are for $p = 1, 2, \infty$.

lack Show that
$$\|A\|_p = \max_{x \in \mathbb{C}^n, \; \|x\|_p = 1} \; \|Ax\|_p$$

2-11

TB 3; GvL 2.2-2.3; AB: 1.1.7 – Norms

TB 3; GvL 2.2-2.3; AB: 1.1.7 - Norms

2-15

TB 3; GvL 2.2-2.3; AB: 1.1.7 - Norms

2-16

 $A = \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}$ **Z**₁₃ Compute the *p*-norm for p =Singular values and matrix norms $1, 2, \infty, F$ for the matrix \blacktriangleright Let $A \in \mathbb{R}^{m \times n}$ or $A \in \mathbb{C}^{m \times n}$ **1** Show that $\rho(A) \leq ||A||$ for any matrix norm. Eigenvalues of $A^H A \& A A^H$ are real > 0. Implies the show this. \swarrow_{15} Is $\rho(A)$ a norm? $\blacktriangleright \text{ Let } \begin{cases} \sigma_i = \sqrt{\lambda_i(A^H A)} \ i = 1, \cdots, n & \text{if } n \le m \\ \sigma_i = \sqrt{\lambda_i(AA^H)} \ i = 1, \cdots, m & \text{if } m < n \end{cases}$ 1. $\rho(A) = ||A||_2$ when A is Hermitian $(A^H = A)$. > True for this particular case... 2. ... However, not true in general. For The σ_i 's are called singular values of A. $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$ \blacktriangleright Note: a total of $\min(m, n)$ singular values. Always sorted decreasingly: $\sigma_1 > \sigma_2 > \sigma_3 > \cdots \sigma_k > \cdots$ we have $\rho(A) = 0$ while $A \neq 0$. Also, triangle inequality not satisfied for the pair A, and $B = A^T$. Indeed, $\rho(A + B) =$ We will see a lot more on singular values later 1 while $\rho(A) + \rho(B) = 0$. TB 3; GvL 2.2-2.3; AB: 1.1.7 – Norms TB 3; GvL 2.2-2.3; AB: 1.1.7 – Norms 2-17 2-18 \blacktriangleright Assume we have r nonzero singular values: A few properties of the 2-norm and the F-norm $\sigma_1 > \sigma_2 > \cdots > \sigma_r > 0$ ▶ Let $A = uv^T$. Then $||A||_2 = ||u||_2 ||v||_2$ ✓ Prove this result $\bullet \|A\|_2 = \sigma_1$ $ullet \|A\|_F = \left[\sum_{i=1}^r \sigma_i^2
ight]^{1/2}$ **Then:** \square_{18} In this case $\|A\|_F = ??$ For any $A \in \mathbb{C}^{m imes n}$ and unitary matrix $Q \in \mathbb{C}^{m imes m}$ we have More generally: Schatten $\|A\|_{*,p} = \left[\sum_{i=1}^r \sigma_i^p
ight]^{1/p}$ *p*-norm (p > 1) defined by $||QA||_2 = ||A||_2; ||QA||_F = ||A||_F.$ ► Note: $||A||_{*,p} = p$ -norm of vector $[\sigma_1; \sigma_2; \cdots; \sigma_r]$ > In particular: $||A||_{*,1} = \sum \sigma_i$ is called the nuclear norm and $[m_{19}]$ Show that the result is true for any orthogonal matrix Q (Qis denoted by $\|A\|_{*}$. (Common in machine learning). has orthonomal columns), i.e., when $Q \in \mathbb{C}^{p \times m}$ with p > m $\llbracket \mathbb{Z}_{20}$ Let $Q \in \mathbb{C}^{n \times n}$. Do we have $\Vert A Q \Vert_2 = \Vert A \Vert_2$? $\Vert A Q \Vert_F =$ $\|A\|_F$? What if $Q \in \mathbb{C}^{n \times p}$, with p < n? TB 3; GvL 2.2-2.3; AB: 1.1.7 - Norms

2-19

TB 3; GvL 2.2-2.3; AB: 1.1.7 - Norms