Inner products and Norms

Inner product of 2 vectors

liner product of 2 vectors x and y in \mathbb{R}^n :

$$x_1y_1+x_2y_2+\cdots+x_ny_n$$
 in \mathbb{R}^n

Notation: (x, y) or $y^T x$

For complex vectors

$$(x,y)=x_1ar{y}_1+x_2ar{y}_2+\dots+x_nar{y}_n$$
 in \mathbb{C}^n

Note: $(x,y) = y^H x$

2-1

Properties of Inner Product:

$$\blacktriangleright (x,y) = (y,x).$$

2-2

$$\blacktriangleright \ (\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$$
 [Linearity]

 \succ $(x,x) \ge 0$ is always real and non-negative.

> (x,x) = 0 iff x = 0 (for finite dimensional spaces).

$$\blacktriangleright$$
 Given $A \in \mathbb{C}^{m imes n}$ then

$$(Ax,y)=(x,A^Hy) \hspace{1em} orall \hspace{1em} x \hspace{1em} \in \hspace{1em} \mathbb{C}^n, orall y \hspace{1em} \in \hspace{1em} \mathbb{C}^m$$

2-3

Norms are needed to measure lengths of vectors and closeness of two vectors. Examples of use: Estimate convergence rate of an iterative method; Estimate the error of an approximation to a given solution;

> A vector norm on a vector space X is a real-valued function on X, which satisfies the following three conditions:

1. $||x|| \ge 0$, $\forall x \in \mathbb{X}$, and ||x|| = 0 iff x = 0. 2. $||\alpha x|| = |\alpha| ||x||$, $\forall x \in \mathbb{X}$, $\forall \alpha \in \mathbb{C}$. 3. $||x + y|| \le ||x|| + ||y||$, $\forall x, y \in \mathbb{X}$.

Third property is called the triangle inequality.

Important example: Euclidean norm on $\mathbb{X} = \mathbb{C}^n$,

$$\|x\|_2 = (x,x)^{1/2} = \sqrt{|x_1|^2 + |x_2|^2 + \ldots + |x_n|^2}$$

🖾 1 Show that when Q is orthogonal then $\|Qx\|_2 = \|x\|_2$

Most common vector norms in numerical linear algebra: special cases of the Hölder norms (for $p \ge 1$):

$$\|x\|_p = \left(\sum_{i=1}^n |x_i|^p
ight)^{1/p}.$$

Find out (bbl search) how to show that these are indeed norms for any $p \ge 1$ (Not easy for 3rd requirement!)

TB 3; GvL 2.2-2.3; AB: 1.1.7 – Norms

2-4

Property:

$$\blacktriangleright$$
 Limit of $\|x\|_p$ when $p \to \infty$ exists:

 $\lim_{p \to \infty} \|x\|_p = \max_{i=1}^n |x_i|$

> Defines a norm denoted by $\|.\|_{\infty}$.

2-5

> The cases p = 1, p = 2, and $p = \infty$ lead to the most important norms $\|.\|_p$ in practice. These are:

$$egin{aligned} \|x\|_1 &= |x_1| + |x_2| + \dots + |x_n|, \ \|x\|_2 &= ig[|x_1|^2 + |x_2|^2 + \dots + |x_n|^2ig]^{1/2}, \ \|x\|_\infty &= \max_{i=1,\dots,n} |x_i|. \end{aligned}$$

The Cauchy-Schwartz inequality (important) is:

 $|(x,y)| \leq \|x\|_2 \|y\|_2.$

Multiple with the second secon

Expand (x + y, x + y). What does the Cauchy-Schwarz inequality imply?

 \blacktriangleright The Hölder inequality (less important for p
eq 2) is:

2-6

$$|(x,y)| \leq \|x\|_p \|y\|_q$$
 , with $rac{1}{p} + rac{1}{q} = 1$.

Second triangle inequality: $||x|| - ||y||| \le ||x - y||$. Consider the metric $d(x, y) = max_i|x_i - y_i|$. Show that any norm in \mathbb{R}^n is a continuous function with respect to this metric.

Solution: We need to show that we can make ||y|| arbitrarily close to ||x||by making y 'close' enough to x, where 'close' is measured in terms of the infinity norm distance $d(x, y) = ||x - y||_{\infty}$. Define u = x - y and write u in the canonocal basis as $u = \sum_{i=1}^{n} \delta_i e_i$. Then:

$$\|u\| = \|\sum_{i=1}^n \delta_i e_i\| \leq \sum_{i=1}^n |\delta_i| \; \|e_i\| \leq \max |\delta_i| \sum_{i=1}^n \|e_i\|$$

Setting $M = \sum_{i=1}^n \|e_i\|$ we get $\| \| \| \le M \max |\delta_i| = M \|x-y\|_\infty$

Let ϵ be given and take x, y such that $||x - y||_{\infty} \leq \frac{\epsilon}{M}$. Then, by using the second triangle inequality we obtain:

$$\|\|\|x\|-\|y\|\|\leq \|x-y\|\leq M\max\delta_i\leq Mrac{\epsilon}{M}=\epsilon.$$

This means that we can make ||y|| arbitrarily close to ||x|| by making y close enough to x in the sense of the defined metric. Therefore $||\cdot||$ is continuous.

TB 3; GvL 2.2-2.3; AB: 1.1.7 – Norms

2-7

Equivalence of norms:

2-8

In finite dimensional spaces $(\mathbb{R}^n, \mathbb{C}^n, ..)$ all norms are 'equivalent': if ϕ_1 and ϕ_2 are two norms then there exists positive constants α, β such that,

$$eta \phi_2(x) \leq \phi_1(x) \leq lpha \phi_2(x)$$

How can you prove this result? [Hint: Show for $\phi_2 = \|.\|_{\infty}$] We can bound one norm in terms of any other norm. Show that for any x: $\frac{1}{\sqrt{n}} ||x||_1 \le ||x||_2 \le ||x||_1$ What are the "unit balls" $B_p = \{x \mid ||x||_p \le 1\}$ associated with the norms $\|.\|_p$ for $p = 1, 2, \infty$, in \mathbb{R}^2 ?

Convergence of vector sequences

A sequence of vectors $x^{(k)}$, $k = 1, \ldots, \infty$ converges to a vector x with respect to the norm $\|.\|$ if, by definition,

$$\lim_{k o\infty} \ \|x^{(k)}-x\|=0$$

Important point: because all norms in \mathbb{R}^n are equivalent, the convergence of $x^{(k)}$ w.r.t. a given norm implies convergence w.r.t. any other norm.

Notation:

2-9

$$\lim_{k o\infty}x^{(k)}=x$$

$$x^{(k)} = egin{pmatrix} 1+1/k \ rac{k}{k+\log_2 k} \ rac{1}{k} \end{pmatrix}$$

converges to

2-10

$$x = egin{pmatrix} 1 \ 1 \ 0 \end{pmatrix}$$

Note: Convergence of $x^{(k)}$ to x is the same as the convergence of each individual component $x_i^{(k)}$ of $x^{(k)}$ to the corresoponding component x_i of x.

2-11

> Can define matrix norms by considering $m \times n$ matrices as vectors in \mathbb{R}^{mn} . These norms satisfy the usual properties of vector norms, i.e.,

1. $||A|| \ge 0, \forall A \in \mathbb{C}^{m \times n}$, and ||A|| = 0 iff A = 02. $||\alpha A|| = |\alpha| ||A||, \forall A \in \mathbb{C}^{m \times n}, \forall \alpha \in \mathbb{C}$ 3. $||A + B|| \le ||A|| + ||B||, \forall A, B \in \mathbb{C}^{m \times n}$.

► However, these will lack (in general) the right properties for composition of operators (product of matrices).

> The case of $\|.\|_2$ yields the Frobenius norm of matrices.

> Given a matrix A in $\mathbb{C}^{m \times n}$, define the set of matrix norms

$$\|A\|_p = \max_{x \in \mathbb{C}^n, \; x
eq 0} rac{\|Ax\|_p}{\|x\|_p}.$$

These norms satisfy the usual properties of vector norms (see previous page).

The matrix norm $\|.\|_p$ is induced by the vector norm $\|.\|_p$.

- Again, important cases are for
$$p=1,2,\infty$$
.

2-12

Show that
$$\|A\|_p = \max_{x \in \mathbb{C}^n, \ \|x\|_p = 1} \ \|Ax\|_p$$

Consistency / sub-mutiplicativity of matrix norms

► A fundamental property of matrix norms is consistency $\|AB\|_p \le \|A\|_p \|B\|_p.$

[Also termed "sub-multiplicativity"]
▶ Consequence: (for square matrices) ||A^k||_p ≤ ||A||^k_p
▶ A^k converges to zero if any of its *p*-norms is < 1
[Note: sufficient but not necessary condition]

2 - 13

Frobenius norms of matrices

2 - 14

The Frobenius norm of a matrix is defined by

$$\|A\|_F = \left(\sum_{j=1}^n \sum_{i=1}^m |a_{ij}|^2\right)^{1/2}.$$

Same as the 2-norm of the column vector in \mathbb{C}^{mn} consisting of all the columns (respectively rows) of A.

This norm is also consistent [but not induced from a vector norm]

Compute the Frobenius norms of the matrices

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 3 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & -1 \\ -1 & \sqrt{5} & 0 \\ -1 & 1 & \sqrt{2} \end{pmatrix}$$

Prove that the Frobenius norm is consistent [Hint: Use Cauchy-Schwartz]

2 Define the 'vector 1-norm' of a matrix A as the 1-norm of the vector of stacked columns of A. Is this norm a consistent matrix norm?

[*Hint:* Result is true – Use Cauchy-Schwarz to prove it.]

2 - 15

Expressions of standard matrix norms

► Recall the notation: (for square $n \times n$ matrices) $\rho(A) = \max |\lambda_i(A)|; \quad Tr(A) = \sum_{i=1}^n a_{ii} = \sum_{i=1}^n \lambda_i(A)$ where $\lambda_i(A)$, i = 1, 2, ..., n are all eigenvalues of A

Compute the *p*-norm for
$$p = A = \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}$$

1, 2, ∞ , *F* for the matrix

14 Show that $ho(A) \leq \|A\|$ for any matrix norm.

🖾 15 ls ho(A) a norm?

2 - 17

1. $\rho(A) = ||A||_2$ when A is Hermitian $(A^H = A)$. \succ True for this particular case...

2. ... However, not true in general. For

$$A=egin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix},$$

we have ho(A) = 0 while $A \neq 0$. Also, triangle inequality not satisfied for the pair A, and $B = A^T$. Indeed, ho(A + B) = 1 while ho(A) +
ho(B) = 0.

Singular values and matrix norms

$$\blacktriangleright$$
 Let $A \in \mathbb{R}^{m imes n}$ or $A \in \mathbb{C}^{m imes n}$

2 - 18

▶ Eigenvalues of $A^H A \& A A^H$ are real ≥ 0 . \blacksquare_{16} Show this.

$$\blacktriangleright \quad \mathsf{Let} \quad \left\{ \begin{array}{l} \sigma_i = \sqrt{\lambda_i(A^H A)} \ i = 1, \cdots, n \quad \text{if} \ n \leq m \\ \sigma_i = \sqrt{\lambda_i(AA^H)} \ i = 1, \cdots, m \ \text{if} \ m < n \end{array} \right.$$

- The σ_i 's are called singular values of A.
- > Note: a total of $\min(m, n)$ singular values.
- \blacktriangleright Always sorted decreasingly: $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq \cdots \sigma_k \geq \cdots$
- We will see a lot more on singular values later

Assume we have r nonzero singular values:

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$

> Then:

2 - 19

$$ullet \|A\|_2 = \sigma_1 \ ullet \|A\|_F = igg[\sum_{i=1}^r \sigma_i^2igg]^{1/2}$$

More generally: Schatten *p*-norm ($p \geq 1$) defined by

$$\|A\|_{*,p} = ig[\sum_{i=1}^r \sigma_i^pig]^{1/p}$$

 \blacktriangleright Note: $\|A\|_{*,p} = p$ -norm of vector $[\sigma_1; \sigma_2; \cdots; \sigma_r]$

► In particular: $||A||_{*,1} = \sum \sigma_i$ is called the nuclear norm and is denoted by $||A||_{*}$. (Common in machine learning).

A few properties of the 2-norm and the F-norm

 \blacktriangleright Let $A = uv^T$. Then $\|A\|_2 = \|u\|_2 \|v\|_2$

```
▶ Prove this result
```

2-20

```
🖾 18 In this case \|A\|_F = ??
```

For any $A\in \mathbb{C}^{m imes n}$ and unitary matrix $Q\in \mathbb{C}^{m imes m}$ we have $\|QA\|_2=\|A\|_2; \ \|QA\|_F=\|A\|_F.$

19 Show that the result is true for any orthogonal matrix Q~(Q) has orthonomal columns), i.e., when $Q~\in~\mathbb{C}^{p imes m}$ with p>m

Let $Q \in \mathbb{C}^{n imes n}$. Do we have $\|AQ\|_2 = \|A\|_2$? $\|AQ\|_F = \|A\|_F$? What if $Q \in \mathbb{C}^{n imes p}$, with p < n?