
LARGE SPARSE EIGENVALUE PROBLEMS

• Projection methods

• The subspace iteration

• Krylov subspace methods: Arnoldi and Lanczos

• Golub-Kahan-Lanczos bidiagonalization

14-1

General Tools for Solving Large Eigen-Problems

ä Projection techniques – Arnoldi, Lanczos, Subspace Iteration;

ä Preconditioninings: shift-and-invert, Polynomials, ...

ä Deflation and restarting techniques

ä Computational codes often combine these three ingredients

14-2 TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 – Eigen3

14-2

A few popular solution Methods

• Subspace Iteration [Now less popular – sometimes used for valida-
tion]

• Arnoldi’s method (or Lanczos) with polynomial acceleration

• Shift-and-invert and other preconditioners. [Use Arnoldi or Lanc-
zos for (A− σI)−1.]

• Davidson’s method and variants, Jacobi-Davidson

• Specialized method: Automatic Multilevel Substructuring (AMLS).

14-3 TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 – Eigen3

14-3

Projection Methods for Eigenvalue Problems

Projection method onto K orthogonal to L

ä Given: Two subspaces K and L of same dimension.

ä Approximate eigenpairs λ̃, ũ, obtained by solving:

Find: λ̃ ∈ C, ũ ∈ K such that(λ̃I −A)ũ ⊥ L

ä Two types of methods:

Orthogonal projection methods: Situation when L = K.

Oblique projection methods: When L 6= K.

ä First situation leads to Rayleigh-Ritz procedure

14-4 TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 – Eigen3

14-4



Rayleigh-Ritz projection

Given: a subspace X known to contain good approximations to
eigenvectors of A.
Question: How to extract ‘best’ approximations to eigenvalues/
eigenvectors from this subspace?

Answer: Orthogonal projection method

ä Let Q = [q1, . . . , qm] = orthonormal basis of X

ä Orthogonal projection method onto X yields:

QH(A− λ̃I)ũ = 0 →

ä QHAQy = λ̃y where ũ = Qy

ä Known as Rayleigh Ritz process
14-5 TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 – Eigen3

14-5

Procedure:
1. Obtain an orthonormal basis of X
2. Compute C = QHAQ (an m×m matrix)
3. Obtain Schur factorization of C, C = Y RY H

4. Compute Ũ = QY

Property: if X is (exactly) invariant, then procedure will yield
exact eigenvalues and eigenvectors.

Proof: Since X is invariant, (A − λ̃I)u = Qz for a certain z.
QHQz = 0 implies z = 0 and therefore (A− λ̃I)u = 0.

ä Can use this procedure in conjunction with the subspace obtained
from subspace iteration algorithm

14-6 TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 – Eigen3

14-6

Subspace Iteration

Original idea: projection technique onto a subspace of the form
Y = AkX

Practically: Ak replaced by suitable polynomial

Advantages: • Easy to implement (in symmetric case);
• Easy to analyze;

Disadvantage: Slow.

ä Often used with polynomial acceleration: AkX replaced by
Ck(A)X. Typically Ck = Chebyshev polynomial.

14-7 TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 – Eigen3

14-7

Algorithm: Subspace Iteration with Projection

1. Start: Choose an initial system of vectors X = [x0, . . . , xm]
and an initial polynomial Ck.

2. Iterate: Until convergence do:

(a) Compute Ẑ = Ck(A)X. [Simplest case: Ẑ = AX.]

(b) Orthonormalize Ẑ: [Z,RZ] = qr(Ẑ, 0)

(c) Compute B = ZHAZ

(d) Compute the Schur factorization B = Y RBY
H of B

(e) Compute X := ZY .

(f) Test for convergence. If satisfied stop. Else select a new poly-
nomial C′k′ and continue.

14-8 TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 – Eigen3

14-8



THEOREM: Let S0 = span{x1, x2, . . . , xm} and assume that
S0 is such that the vectors {Pxi}i=1,...,m are linearly independent
where P is the spectral projector associated with λ1, . . . , λm. Let
Pk the orthogonal projector onto the subspace Sk = span{Xk}.
Then for each eigenvector ui of A, i = 1, . . . ,m, there exists a
unique vector si in the subspace S0 such that Psi = ui. Moreover,
the following inequality is satisfied

‖(I − Pk)ui‖2 ≤ ‖ui − si‖2

(∣∣∣∣
λm+1

λi

∣∣∣∣+ εk

)k
, (1)

where εk tends to zero as k tends to infinity.

14-9 TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 – Eigen3

14-9

KRYLOV SUBSPACE METHODS

14-10

Krylov subspace methods

Principle: Projection methods on Krylov subspaces:

Km(A, v1) = span{v1, Av1, · · · , Am−1v1}

• The most important class of projection methods [for linear systems
and for eigenvalue problems]

• Variants depend on the subspace L

ä Let µ = deg. of minimal polynom. of v1. Then:

•Km = {p(A)v1|p = polynomial of degree ≤ m− 1}
•Km = Kµ for all m ≥ µ. Moreover, Kµ is invariant under A.

• dim(Km) = m iff µ ≥ m.

14-11 TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 – Eigen3

14-11

Arnoldi’s algorithm

ä Goal: to compute an orthogonal basis of Km.

ä Input: Initial vector v1, with ‖v1‖2 = 1 and m.

ALGORITHM : 1 Arnoldi’s procedure

For j = 1, ...,m do
Compute w := Avj

For i = 1, . . . , j, do

{
hi,j := (w, vi)
w := w − hi,jvi

hj+1,j = ‖w‖2;
vj+1 = w/hj+1,j

End

ä Based on Gram-Schmidt procedure

14-12 TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 – Eigen3

14-12



Result of Arnoldi’s algorithm

Let: Hm =




x x x x x
x x x x x

x x x x
x x x

x x
x



, Hm =




x x x x x
x x x x x

x x x x
x x x

x x




Results:

1. Vm = [v1, v2, ..., vm] orthonormal basis of Km.

2. AVm = Vm+1Hm = VmHm + hm+1,mvm+1e
T
m

3. V T
mAVm = Hm ≡ Hm− last row.

14-13 TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 – Eigen3

14-13

Application to eigenvalue problems

ä Write approximate eigenvector as ũ = Vmy

ä Galerkin condition:

(A− λ̃I)Vmy ⊥ Km → V H
m (A− λ̃I)Vmy = 0

ä Approximate eigenvalues are eigenvalues of Hm

Hmyj = λ̃jyj

ä Associated approximate eigenvectors are

ũj = Vmyj

ä Typically a few of the outermost eigenvalues will converge first.

14-14 TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 – Eigen3

14-14

Hermitian case: The Lanczos Algorithm

ä The Hessenberg matrix becomes tridiagonal :

A = AH and V H
m AVm = Hm → Hm = HH

m

ä Denote Hm by Tm and H̄m by T̄m. We can write

Tm =




α1 β2

β2 α2 β3

β3 α3 β4

. . .
. . .
βm αm




ä Relation AVm = Vm+1Tm

14-15 TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 – Eigen3

14-15

ä Consequence: three term recurrence

βj+1vj+1 = Avj − αjvj − βjvj−1

ALGORITHM : 2 Lanczos

1. Choose an initial v1 with ‖v−1‖2 = 1;
Set β1 ≡ 0, v0 ≡ 0

2. For j = 1, 2, . . . ,m Do:
3. wj := Avj − βjvj−1

4. αj := (wj, vj)
5. wj := wj − αjvj
6. βj+1 := ‖wj‖2. If βj+1 = 0 then Stop
7. vj+1 := wj/βj+1

8. EndDo

Hermitian matrix + Arnoldi→ Hermitian Lanczos

14-16 TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 – Eigen3

14-16



ä In theory vi’s defined by 3-term recurrence are orthogonal.

ä However: in practice severe loss of orthogonality;

Observation [Paige, 1981]: Loss of orthogonality starts suddenly,
when the first eigenpair has converged. It is a sign of loss of linear
independence of the computed eigenvectors. When orthogonality is
lost, then several the copies of the same eigenvalue start appearing.

14-17 TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 – Eigen3

14-17

Reorthogonalization

ä Full reorthogonalization – reorthogonalize vj+1 against all
previous vi’s every time.

ä Partial reorthogonalization – reorthogonalize vj+1 against
all previous vi’s only when needed [Parlett & Simon]

ä Selective reorthogonalization – reorthogonalize vj+1

against computed eigenvectors [Parlett & Scott]

ä No reorthogonalization – Do not reorthogonalize - but take
measures to deal with ’spurious’ eigenvalues. [Cullum &
Willoughby]

14-18 TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 – Eigen3

14-18

Lanczos Bidiagonalization

ä We now deal with rectangular matrices. Let A ∈ Rm×n.

ALGORITHM : 3 Golub-Kahan-Lanczos

1. Choose an initial v1 with ‖v1‖2 = 1;
Set β0 ≡ 0, u0 ≡ 0

2. For k = 1, . . . , p Do:
3. û := Avk − βk−1uk−1

4. αk = ‖û‖2 ; uk = û/αk
5. v̂ = ATuk − αkvk
6. βk = ‖v̂‖2 ; vk+1 := v̂/βk
7. EndDo

Let: Vp+1 = [v1, v2, · · · , vp+1] ∈ Rn×(p+1)

Up = [u1, u2, · · · , up] ∈ Rm×p

14-19 TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 – Eigen3

14-19

Let:

Bp =




α1 β1

α2 β2
. . . . . .

. . . . . .
αp βp




;

ä B̂p = Bp(:, 1 : p)
ä Vp = [v1, v2, · · · , vp] ∈ Rn×p

Result:

ä V T
p+1Vp+1 = I

ä UT
p Up = I

ä AVp = UpB̂p

ä ATUp = Vp+1B
T
p

14-20 TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 – Eigen3

14-20



ä Observe that : AT(AVp) = AT(UpB̂p)

= Vp+1B
T
p B̂p

ä BT
p B̂p is a (symmetric) tridiagonal matrix of size (p+ 1)× p

ä Call this matrix Tk. Then: (ATA)Vp = Vp+1Tp

ä Standard Lanczos relation !

ä Algorithm is equivalent to standard Lanczos applied to ATA.

ä Similar result for the ui’s [involves AAT ]

-1 Work out the details: What are the entries of T̄p relative to
those of Bp?

14-21 TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 – Eigen3

14-21


