LARGE SPARSE EIGENVALUE PROBLEMS

e Projection methods
e The subspace iteration
e Krylov subspace methods: Arnoldi and Lanczos

e Golub-Kahan-Lanczos bidiagonalization
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General Tools for Solving Large FEigen-Problems

»  Projection techniques — Arnoldi, Lanczos, Subspace Iteration;
»  Preconditioninings: shift-and-invert, Polynomials, ...
»  Deflation and restarting techniques

»  Computational codes often combine these three ingredients
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A few popular solution Methods

e Subspace Iteration [Now less popular — sometimes used for valida-
tion]

e Arnoldi's method (or Lanczos) with polynomial acceleration

e Shift-and-invert and other preconditioners. [Use Arnoldi or Lanc-

zos for (A — oI)™ 1]
e Davidson's method and variants, Jacobi-Davidson

e Specialized method: Automatic Multilevel Substructuring (AMLS).
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Projection Methods for Eigenvalue Problems

Projection method onto K orthogonal to L

»  Given: Two subspaces K and L of same dimension.
»  Approximate eigenpairs 5\, u, obtained by solving:
Find: A € C,& € K suchthat Al — A)a L L

»  Two types of methods:
Orthogonal projection methods: Situation when L = K.
Oblique projection methods: When L # K.

»  First situation leads to Rayleigh-Ritz procedure
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Rayleigh-Ritz projection

Given: a subspace X known to contain good approximations to
eigenvectors of A.

Question: How to extract ‘best’ approximations to eigenvalues/
eigenvectors from this subspace?

Answer: I Orthogonal projection method

» Let Q = [q1,. .-, qm| = orthonormal basis of X

»  Orthogonal projection method onto X yields:
QH(A—-XDa =0 —

> QP AQy = Ay where @ = Qy
»  Known as Rayleigh Ritz process
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Procedure:

1. Obtain an orthonormal basis of X

2. Compute C = Q¥ AQ (an m X m matrix)
3. Obtain Schur factorization of C, C = YRY H
4. Compute U=QY

Property: if X is (exactly) invariant, then procedure will yield
exact eigenvalues and eigenvectors.

Proof: Since X is invariant, (A — AI)u = Qz for a certain z.
Q" Qz = 0 implies z = 0 and therefore (A — AI)u = 0.

» (Can use this procedure in conjunction with the subspace obtained
from subspace iteration algorithm
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Subspace Iteration

Original idea: projection technique onto a subspace of the form
Y = AFX
Practically: A* replaced by suitable polynomial

Advantages: ® Easy to implement (in symmetric case);
e Easy to analyze;

Disadvantage: Slow.

»  Often used with polynomial acceleration: A*X replaced by
Cr(A)X. Typically Cy = Chebyshev polynomial.
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Algorithm: Subspace Iteration with Projection

1. Start: Choose an initial system of vectors X = [Xg,..., Tsy]
and an initial polynomial Ck.

2. lterate: Until convergence do:

(a) Compute Z = Cr(A)X. [Simplest case: Z = AX ]
(b) Orthonormalize Z:  [Z, Rz] = qr(Z,0)

(c) Compute B = Z1AZ

(d) Compute the Schur factorization B = Y RgY ! of B
(e) Compute X := ZY .

(f) Test for convergence. If satisfied stop. Else select a new poly-
nomial C}, and continue.
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THEOREM: Let Sy = span{xi,x2,..., T} and assume that
So is such that the vectors { Px;};—1....m are linearly independent
where P is the spectral projector associated with A1, ..., \,,. Let
Py. the orthogonal projector onto the subspace Sy = span{X}.
Then for each eigenvector u; of A, 2 = 1,...,m, there exists a
unique vector s; in the subspace Sy such that Ps; = wu;. Moreover,
the following inequality is satisfied

>\m—|—1

1

+) )

1T = Poyuills < [[ui — sl (

where €, tends to zero as k tends to infinity.
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Krylov subspace methods

Principle:  Projection methods on Krylov subspaces:

K,,(A,v;) = span{v;, Avy,--- , A" 1o}

e The most important class of projection methods [for linear systems
and for eigenvalue problems]

e Variants depend on the subspace L

» Let u = deg. of minimal polynom. of v1. Then:

o K., = {p(A)vy|p = polynomial of degree < m — 1}
o K,, = K, forall m > p. Moreover, K,, is invariant under A.
edim(K,,) = miff u > m.
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Arnoldi’s algorithm

»  Goal: to compute an orthogonal basis of K ,.

» Input: Initial vector vy, with ||v1|[2 = 1 and m.

ALGORITHM : 1. Arnoldi’s procedure

For3 = 1,...,m do
Compute w := Av;

- . hij = (w, vi)
FOI’Z—L---»erO w::w—hi,j’vi

hji1; = [[wll2
Vi1 = w/hjiq;
End

» Based on Gram-Schmidt procedure
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Result of Arnoldi’s algorithm

/a:a::v:vzv\
/wwwww\

T T T T X
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Let: H,,, = S , H,, = r T T x
r T T

Tr @
\ z =)

\ ©/

Results: |

1. V,, = [v1, V2, ..., U] orthonormal basis of K.
2. AVm — m—l—lﬁm — VmHm + hm—i—l,mvm—l—leg@
3. anAVm — H,, = H,,— last row.
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Application to eigenvalue problems

»  Write approximate eigenvector as u = V,,,y

»  Galerkin condition:
(A-AXDV,y L K, — VHA-X)V,y=0

»  Approximate eigenvalues are eigenvalues of H,,
Hpmy; = Ajy;

» Associated approximate eigenvectors are

~

Uj = VmY;

»  Typically a few of the outermost eigenvalues will converge first.
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Hermaitian case: The Lanczos Algorithm

»  The Hessenberg matrix becomes tridiagonal :

A=A" and V*AV, =H, — H,=H"

» Denote H,, by T}, and H,,, by T,,. We can write

/al B2 \

B2 az B3
T, = B3 a3 B4

\ B )
» Relation AV,,, = m+1T—m
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»  Consequence: three term recurrence
Bi+1vj+1 = Av; — av; — B

ALGORITHM : 2. Lanczos

1. Choose an initial v1 with ||v_1||2 = 1,
561’,31 =0,v9=0

2. Forg =1,2,...,m Do:

3 W, = A’Uj — 6jvj_1

4. = (’UJj,’Uj)

5. W, = W; — & U,

6. Bjt+1:= ||lwjl||2. If Bj+1 = O then Stop

7. i = wi/Bin

8. EndDo

Hermitian matrix + Arnoldi — Hermitian Lanczos
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» In theory v;'s defined by 3-term recurrence are orthogonal.

» However: in practice severe loss of orthogonality;

Observation [Paige, 1981]: Loss of orthogonality starts suddenly,
when the first eigenpair has converged. It is a sign of loss of linear
independence of the computed eigenvectors. When orthogonality is
lost, then several the copies of the same eigenvalue start appearing.
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Reorthogonalization

>»

>
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Full reorthogonalization — reorthogonalize v;4; against all
previous wv; s every time.

Partial reorthogonalization — reorthogonalize v, against
all previous v;'s only when needed [Parlett & Simon]

Selective reorthogonalization — reorthogonalize ;4
against computed eigenvectors [Parlett & Scott]

No reorthogonalization — Do not reorthogonalize - but take
measures to deal with 'spurious’ eigenvalues. [Cullum &

Willoughby]
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Lanczos Bidiagonalization

»  We now deal with rectangular matrices. Let A € R™*"™,
ALGORITHM : 3. Golub-Kahan-Lanczos

1. Choose an initial v with ||v1||2 = 1,
Set Bp =0, ug =0

2. Fork=1,...,p Do:
3. ’l], i A’Uk _ IBk—luk—l
4. o =||a|lz; up = u/oy
3 v = ATup — agvy
6. Br = |?]]2 3 Vir1 = 0/ Bk
/. EndDo
Let: Vyr1 = [V1, 09, ,0ppq] € RPX(PHD)
Up p— [’u,l, Uy * up] c [RMXPp
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ay G2
Bp — e ’
Let:
_ p Bp_
> Bp — Bp( o 1 p)
) ‘/}) p— [’Ul, Vo, ,’Up] - RnXp

Result: | > U, U =
— > AV, =U,B,
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Observe that : AT(AV,) = AT(Upo)
— ‘/;7+1BZBP
Bgép is a (symmetric) tridiagonal matrix of size (p+1) X p

Call this matrix T. Then: (ATA)V;? — V;?JrlTp

Standard Lanczos relation !
Algorithm is equivalent to standard Lanczos applied to AT A.
Similar result for the u;'s [involves A A”]

Work out the details: What are the entries of Tp relative to

those of B,,?

14-21

TB: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 46.2; Gvl4 10.1,10.5.1 — Eigen3

14-21



