
The QR algorithm

ä The most common method for solving small (dense) eigenvalue
problems. The basic algorithm:

QR without shifts

1. Until Convergence Do:
2. Compute the QR factorization A = QR
3. Set A := RQ
4. EndDo

ä “Until Convergence” means “Until A becomes close enough to
an upper triangular matrix”
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ä Note: Anew = RQ = QH(QR)Q = QHAQ

ä Anew is similar to A throughout the algorithm .

ä Convergence analysis complicated – but insight: we are implicitly
doing a QR factorization of Ak:

QR-Factorize: Multiply backward:
Step 1 A0 = Q0R0 A1 = R0Q0

Step 2 A1 = Q1R1 A2 = R1Q1

Step 3: A2 = Q2R2 A3 = R2Q2 Then:

[Q0Q1Q2][R2R1R0] = Q0Q1A2R1R0

= Q0Q1R1Q1R1R0

= (Q0R0)︸ ︷︷ ︸
A

(Q0R0)︸ ︷︷ ︸
A

(Q0R0)︸ ︷︷ ︸
A

= A3

ä [Q0Q1Q2][R2R1R0] == QR factorization of A3
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ä Above basic algorithm is never used as is in practice. Two
variations:

(1) Use shift of origin and

(2) Start by transforming A into an Hessenberg matrix
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Practical QR algorithms: Shifts of origin

Observation: (from theory): Last row converges fastest. Convergence

is dictated by |λn|
|λn−1|

ä We will now consider only the real symmetric case.

ä Eigenvalues are real.

ä A(k) remains symmetric throughout process.

ä As k goes to infinity the last column and row (except a(k)
nn)

converge to zero quickly.,,

ä and a(k)
nn converges to lowest eigenvalue.
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A(k) =




. . . . . a

. . . . . a

. . . . . a

. . . . . a

. . . . . a
a a a a a a




ä Idea: Apply QR algorithm to A(k)− µI with µ = a(k)
nn. Note:

eigenvalues of A(k)−µI are shifted by µ, and eigenvectors are the
same.
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QR with shifts

1. Until row ain, 1 ≤ i < n converges to zero DO:
2. Obtain next shift (e.g. µ = ann)
3. A− µI = QR
5. Set A := RQ+ µI
6. EndDo

ä Convergence (of last row) is cubic at the limit! [for symmetric
case]
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ä Result of algorithm:

A(k) =




. . . . . 0

. . . . . 0

. . . . . 0

. . . . . 0

. . . . . 0
0 0 0 0 0 λn




ä Next step: deflate, i.e., apply above algorithm to (n − 1) ×
(n− 1) upper triangular matrix.
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Practical algorithm: Use the Hessenberg Form

Recall: Upper Hessenberg matrix is such that

aij = 0 for j < i− 1

Observation: The QR algorithm preserves Hessenberg form (tridi-
agonal form in symmetric case). Results in substantial savings.

Transformation to Hessenberg form

ä Want H1AH
T
1 = H1AH1 to

have the form shown on the right

ä Consider the first step only on a
6× 6 matrix




? ? ? ? ? ?
? ? ? ? ? ?
0 ? ? ? ? ?
0 ? ? ? ? ?
0 ? ? ? ? ?
0 ? ? ? ? ?



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ä Choose a w in H1 = I − 2wwT to make the first column
have zeros from position 3 to n. So w1 = 0.

ä Apply to left: B = H1A

ä Apply to right: A1 = BH1.

Main observation: the Householder matrix H1 which transforms
the column A(2 : n, 1) into e1 works only on rows 2 to n. When
applying the transpose H1 to the right of B = H1A, we observe
that only columns 2 to n will be altered. So the first column will
retain the desired pattern (zeros below row 2).

ä Algorithm continues the same way for columns 2, ...,n− 2.
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QR for Hessenberg matrices

ä Need the “Implicit Q theorem”

Suppose that QTAQ is an unreduced upper Hessenberg matrix.
Then columns 2 to n of Q are determined uniquely (up to signs)
by the first column of Q.

ä In other words if V TAV = G and QTAQ = H are both
Hessenberg and V (:, 1) = Q(:, 1) then V (:, i) = ±Q(:, i) for
i = 2 : n.

Implication: To compute Ai+1 = QT
i AQi we can:

ä Compute 1st column of Qi [== scalar ×A(:, 1)]

ä Choose other columns so Qi = unitary, and Ai+1 = Hessenberg.
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ä W’ll do this with Givens rotations:

Example: With n = 5 :
A =




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗




1. Choose G1 = G(1, 2, θ1) so that (GT
1A0)21 = 0

ä A1 = GT
1AG1 =




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
+ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗




13-11 TB: 28-30; AB: 1.3.3, 3.2.3, 3.4.2, 3.5, 3.6.2; GvL 8.1-8.2.3 – Eigen2

13-11

2. Choose G2 = G(2, 3, θ2) so that (GT
2A1)31 = 0

ä A2 = GT
2A1G2 =




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 + ∗ ∗ ∗
0 0 0 ∗ ∗




3. Choose G3 = G(3, 4, θ3) so that (GT
3A2)42 = 0

ä A3 = GT
3A2G3 =




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 + ∗ ∗



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4. Choose G4 = G(4, 5, θ4) so that (GT
4A3)53 = 0

ä A4 = GT
4A3G4 =




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗




ä Process known as “Bulge chasing”

ä Similar idea for the symmetric (tridiagonal) case
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The symmetric eigenvalue problem: Basic facts

ä Consider the Schur form of a real symmetric matrix A:

A = QRQH

Since AH = A then R = RH ä

Eigenvalues of A are real

and

There is an orthonormal basis of eigenvectors of A

In addition, Q can be taken to be real when A is real.

(A−λI)(u+ iv) = 0→ (A−λI)u = 0 & (A−λI)v = 0

ä Can select eigenvector to be either u or v
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The min-max theorem (Courant-Fischer)

Label eigenvalues decreasingly:

λ1 ≥ λ2 ≥ · · · ≥ λn

The eigenvalues of a Hermitian matrix A are characterized by the
relation

λk = max
S, dim(S)=k

min
x∈S,x 6=0

(Ax, x)

(x, x)

Proof: Preparation: Since A is symmetric real (or Hermitian complex) there is

an orthonormal basis of eigenvectors u1, u2, · · · , un. Express any vector x in this

basis as x =
∑n

i=1αiui. Then : (Ax, x)/(x, x) = [
∑
λi|αi|2]/[

∑ |αi|2].

(a) Let S be any subspace of dimension k and letW = span{uk, uk+1, · · · , un}.

A dimension argument (used before) shows that S ∩W 6= {0}. So there is a
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non-zero xw in S ∩W . Express this xw in the eigenbasis as xw =
∑n

i=k αiui.

Then since λi ≤ λk for i ≥ k we have:

(Axw, xw)

(xw, xw)
=

∑n
i=k λi|αi|2∑n
i=k |αi|2

≤ λk

So for any subspace S of dim. k we have minx∈S,x 6=0(Ax, x)/(x, x) ≤ λk.

(b) We now take S∗ = span{u1, u2, · · · , uk}. Since λi ≥ λk for i ≤ k, for

this particular subspace we have:

min
x ∈ S∗, x6=0

(Ax, x)

(x, x)
= min

x ∈ S∗, x6=0

∑k
i=1 λi|αi|2∑n
i=k |αi|2

= λk.

(c) The results of (a) and (b) imply that the max over all subspaces S of dim. k

of minx∈S,x6=0(Ax, x)/(x, x) is equal to λk
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ä Consequences:

λ1 = max
x 6=0

(Ax, x)

(x, x)
λn = min

x 6=0

(Ax, x)

(x, x)

ä Actually 4 versions of the same theorem. 2nd version:

λk = min
S, dim(S)=n−k+1

max
x∈S,x6=0

(Ax, x)

(x, x)

ä Other 2 versions come from ordering eigenvalues increasingly
instead of decreasingly.

-1 Write down all 4 versions of the theorem

-2 Use the min-max theorem to show that ‖A‖2 = σ1(A) - the
largest singular value of A.
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ä Interlacing Theorem: Denote the k × k principal submatrix of

A as Ak, with eigenvalues {λ[k]
i }ki=1. Then

λ
[k]
1 ≥ λ[k−1]

1 ≥ λ[k]
2 ≥ λ[k−1]

2 ≥ · · ·λ[k−1]
k−1 ≥ λ[k]

k

Example: λi’s = eigenvalues ofA, µi’s = eigenvalues ofAn−1:

• • •? ? ?
λn•

λn−1•
µn−1
?

µn−2
?

λ3•
λ2•

λ1•
µ2

?
µ1

?

ä Many uses.

ä For example: interlacing theorem for roots of orthogonal polyno-
mials
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The Law of inertia

ä Inertia of a matrix = [m, z, p] with m = number of < 0
eigenvalues, z = number of zero eigenvalues, and p = number of
> 0 eigenvalues.

Sylvester’s Law of inertia: If X ∈ Rn×n is nonsingular, then A
and XTAX have the same inertia.

-3 Suppose that A = LDLT where L is unit lower triangular,
and D diagonal. How many negative eigenvalues does A have?

-4 Assume that A is tridiagonal. How many operations are re-
quired to determine the number of negative eigenvalues of A?
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-5 Devise an algorithm based on the inertia theorem to compute
the i-th eigenvalue of a tridiagonal matrix.

-6 What is the inertia of the matrix
(
I F
F T 0

)

where F is m× n, with n < m, and of full rank?

[Hint: use a block LU factorization]
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Bisection algorithm for tridiagonal matrices:

ä Goal: to compute i-th eigenvalue of A (tridiagonal)

ä Get interval [a, b] containing
spectrum [Gershgorin]:

a ≤ λn ≤ · · · ≤ λ1 ≤ b

ä Let σ = (a+ b)/2 = middle of interval

ä Calculate p = number of positive eigenvalues of A− σI
• If p ≥ i then λi ∈ (σ, b]→ set a := σ

a bσλ λ λ λ
1in−1n

• Else then λi ∈ [a, σ]→ set b := σ

ä Repeat until b− a is small enough.
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The QR algorithm for symmetric matrices

ä Most important method used : reduce to tridiagonal form and
apply the QR algorithm with shifts.

ä Householder transformation to Hessenberg form yields a tridiag-
onal matrix because

HAHT = A1

is symmetric and also of Hessenberg form ä it is tridiagonal sym-
metric.

Tridiagonal form preserved by QR similarity transformation

13-22 TB: 28-30; AB: 1.3.3, 3.2.3, 3.4.2, 3.5, 3.6.2; GvL 8.1-8.2.3 – Eigen2

13-22

Practical method

ä How to implement the QR algorithm with shifts?

ä It is best to use Givens rotations – can do a shifted QR step
without explicitly shifting the matrix..

ä Two most popular shifts:

s = ann and s = smallest e.v. of A(n− 1 : n, n− 1 : n)
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Jacobi iteration - Symmetric matrices

ä Main idea: Rotation matrices of the form

J(p, q, θ) =




1 . . . 0 . . . 0 0
... . . . ... ... ... ... ...
0 · · · c · · · s · · · 0
... · · · ... . . . ... ... ...
0 · · · −s · · · c · · · 0
... · · · ... · · · ... · · · ...
0 . . . 0 . . . 1




p

q

c = cos θ and s = sin θ are so that J(p, q, θ)TAJ(p, q, θ)
has a zero in position (p, q) (and also (q, p))

ä Frobenius norm of matrix is preserved – but diagonal elements
become larger ä convergence to a diagonal.
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ä Let B = JTAJ (where J ≡ Jp,q,θ).

ä Look at 2× 2 matrix B([p, q], [p, q]) (matlab notation)

ä Keep in mind that apq = aqp and bpq = bqp

(
bpp bpq
bqp bqq

)
=

(
c −s
s c

)(
app apq
aqp aqq

)(
c s
−s c

)

=

(
c −s
s c

)[
capp − sapq sapp + capq
caqp − saqq sapq + caqq

]

=[
c2app + s2aqq − 2sc apq (c2 − s2)apq − sc(aqq − app)

∗ c2aqq + s2app + 2sc apq

]

ä Want: (c2 − s2)apq − sc(aqq − app) = 0
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c2 − s2
2sc

=
aqq − app

2apq
≡ τ

ä Letting t = s/c (= tan θ) → quad. equation

t2 + 2τt− 1 = 0

ä t = −τ ± √1 + τ 2 = 1

τ±√1+τ 2

ä Select sign to get a smaller t so θ ≤ π/4.

ä Then : c =
1√

1 + t2
; s = c ∗ t

ä Implemented in matlab script jacrot(A,p,q) – See HW6.
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ä Define: AO = A− Diag(A) ≡ A ‘with its diagonal
entries replaced by zeros’

ä Observations: (1) Unitary transformations preserve ‖.‖F . (2)
Only changes are in rows and columns p and q.

ä Let B = JTAJ (where J ≡ Jp,q,θ). Then,

a2
pp + a2

qq + 2a2
pq = b2pp + b2qq + 2b2pq = b2pp + b2qq

because bpq = 0. Then, a little calculation leads to:

‖BO‖2F = ‖B‖2F −
∑

b2ii = ‖A‖2F −
∑

b2ii

= ‖A‖2F −
∑

a2
ii +

∑
a2
ii −

∑
b2ii

= ‖AO‖2F + (a2
pp + a2

qq − b2pp − b2qq)
= ‖AO‖2F − 2a2

pq
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ä ‖AO‖F will decrease from one step to the next.

-7 Let ‖AO‖I = maxi 6=j |aij|. Show that

‖AO‖F ≤
√
n(n− 1)‖AO‖I

-8 Use this to show convergence in the case when largest entry is
zeroed at each step.
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