The QR algorithm

»  The most common method for solving small (dense) eigenvalue
problems. The basic algorithm:

QR without shifts

1. Until Convergence Do:

2. Compute the QR factorization A = QR
3. Set A := RQ
4. EndDo

»  “Until Convergence” means “Until A becomes close enough to
an upper triangular matrix”
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» Note: Anewy = RQ = QH(QR)Q = Q1 AQ
»  A,ew is similar to A throughout the algorithm .

»  Convergence analysis complicated — but insight: we are implicitly
doing a QR factorization of AF-

QR-Factorize: Multiply backward:
Step 1 Ao = QoRy A = RoQo
Step 2 A= Q1R Ay = R1Qq
Step 3: Ay = Qsz As = R2Q2 Then:
[QoQ1Q:][R2R1 Ry| = QoQ1AR 1Ry
= QuQ:1R1Q1R1 Ry
= (QoR R Ry) = A°
,(Q(j4 0) ,(Q(?4 0) ,(Q(I)4 0)

([Q0Q1Q:][R2R1 Ry] == QR factorization of A®
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»  Above basic algorithm is never used as is in practice. Two
variations:

(1) Use shift of origin and

(2) Start by transforming A into an Hessenberg matrix
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Practical QR algorithms: Shifts of origin

Observation: (from theory): Last row converges fastest. Convergence

is dictated by |>|\)\i|1|

»  We will now consider only the real symmetric case.

» Eigenvalues are real.
»  AK) remains symmetric throughout process.

» As k goes to infinity the last column and row (except a!®))
converge to zero quickly.,,

(k) i
» and a)’) converges to lowest eigenvalue.
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\ a a a a a a/
» |dea: Apply QR algorithm to A%) — T with p = a?(z’jz. Note:

eigenvalues of A®) — (4T are shifted by g, and eigenvectors are the
same.
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QR with shifts

1. Until row a;,,1 < 2 < m converges to zero DO:
2. Obtain next shift (e.g. u = ann)

3. A—ul = QR

5. Set A := RQ + pnl

6. EndDo

»  Convergence (of last row) is cubic at the limit! [for symmetric
case]
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»  Result of algorithm:

\ 0 0 0 0 0X\,)
» Next step: deflate, i.e., apply above algorithm to (n — 1) X
(n — 1) upper triangular matrix.
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Practical algorithm: Use the Hessenberg Form

Recall: Upper Hessenberg matrix is such that

az-j:Oforj<i—1

Observation: The QR algorithm preserves Hessenberg form (tridi-
agonal form in symmetric case). Results in substantial savings.

Transformation to Hessenberg form

/*k * * * * *\
» Want HHAHT = HiAH  to |* * * * * %
have the form shown on the right 0 *x * *x * %
O % * * *x %
»  Consider the first step only on a 0 * * *x *x x
6 X 6 matrix \0 *x k& % *)
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» Choose a w in Hy = I — 2ww?! to make the first column
have zeros from position 3 to n. So w; = 0.

» Apply to left: B = H, A

»  Apply to right: A; = BH;.

Main observation: the Householder matrix H; which transforms
the column A(2 : n, 1) into e; works only on rows 2 to . When

applying the transpose H to the right of B = H; A, we observe
that only columns 2 to m will be altered. So the first column will

retain the desired pattern (zeros below row 2).

» Algorithm continues the same way for columns 2, ... n — 2.
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QR for Hessenberg matrices

» Need the “Implicit Q theorem”

Suppose that QT AQ is an unreduced upper Hessenberg matrix.
Then columns 2 to n of QQ are determined uniquely (up to signs)
by the first column of Q).

» In other words if VAV = G and QT AQ = H are both
Hessenberg and V' (:,1) = Q(:, 1) then V(:,2) = £Q(:,2) for
1 =2:n.

Implication: | To compute A; 11 = Q?AQz we can:

»  Compute 1st column of Q; [== scalar X A(:, 1)]

» Choose other columns so Q; = unitary, and A;,1 = Hessenberg.
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Example:

» Wl do this with Givens rotations: w  w % ok x
A o 0 E 3 %k % *
\/\/it|1 n = Ei : () () % sk sk

\0 0 0 = x)

1. Choose Gy = G (1,2, 60,) so that (Gon)zl =0

(* * % * *\
* % % % *
> A =GIAG, = |+ * * *x =
0O 0 x =% =%
\0O 0 0 * =x)
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2. Choose Gy = G(2,3,02) so that (G A1)31 = 0

(* k k k *\
k k k k k
» Ay =G, A1G2= |0 x % % %
0O + % *x =%
\0 0 0 *

3. Choose G35 = G(3,4,03) so that (G§A2)42 =0

(* k k k *\
k k k k k
> A3 =G;A:G3= [0 *x x x x
O 0 =*x % =%
\0 0 + * *
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4. Choose G4 = G(4,5,8,) so that (G} As)s3 =0

/* * k% *\
* ok ok ok %
) o A4 = GZA3G4 — 0 * * x k
0O 0 x % =%

\0 0 0 * =x)

»  Process known as “Bulge chasing”

» Similar idea for the symmetric (tridiagonal) case
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The symmetric eigenvalue problem: Basic facts

»  Consider the Schur form of a real symmetric matrix A:
A = QRQ"
Since AH = A then R = RY »

Eigenvalues of A are real

and

There is an orthonormal basis of eigenvectors of A

In addition, (Q can be taken to be real when A is real.
(A=A (u+tw) =0 —=> (A—ADH)u=0& (A—-A)v =0
» (Can select eigenvector to be either u or v
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The min-max theorem (Courant-Fischer)

Label eigenvalues decreasingly:

AlZAZZ"'>)\n

The eigenvalues of a Hermitian matrix A are characterized by the
relation

. (Axz, x)
AL = max min
S, dim(S)=k x€S,x#0 (x,T)

Proof: = Preparation: Since A is symmetric real (or Hermitian complex) there is

an orthonormal basis of eigenvectors wq, wa, « + + , u,,. Express any vector x in this

basisas ¢ = Y, ayu;. Then: (Ax, x)/(z, ) = D Ni|ail?]/ D2 |eul?].

(a) Let S be any subspace of dimension k and let W = span{ug, Ug11,°** 5 Un}.

A dimension argument (used before) shows that S N W # {0}. So there is a
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non-zero &, in S M V. Express this x,, in the eigenbasis as x,, = Z,’Z’:k o,
Then since \; < A for 2 > k we have:
(AT, To) Z?:k Ail o)
= —= 5 S Ak
(Tws Taw) D it i

So for any subspace S of dim. k we have mingecgs z-20(Ax, x)/(x, ) < Ak

(b) We now take S, = span{ui,ug,-++ ,ur}. Since \; > g for 2 < k, for

this particular subspace we have:

. (Azx,x) .
I]:l]i[l p— I][l]ﬁ[l
x € Sy, x#0 (fB, a;) x € Sk, x#0 Z?:k |az|2

k 2
Aoy
SE Al

(c) The results of (a) and (b) imply that the max over all subspaces S of dim. k

of mingecg z20(Ax, x)/(x, ) is equal to Ay
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»  Consequences:

(Ax, x) . (Az,x)
A1 = max A, = min
z#0 (x, ) z#0  (x,x)

»  Actually 4 versions of the same theorem. 2nd version:

. (Ax, x)
A = min max
S, dim(S)=n—k+1 =z€Sx#0 (x,T)

»  Other 2 versions come from ordering eigenvalues increasingly
instead of decreasingly.

#11| Write down all 4 versions of the theorem

#1| Use the min-max theorem to show that || A||]2 = o1(A) - the
largest singular value of A.
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» |Interlacing Theorem: Denote the k X k principal submatrix of
A as Ay, with eigenvalues {)\Ek] le. Then

A[lk] > A[lk—l] > A[zk] > )\[zk—l] > H)\Lk_—ll] > )\Lk]

Example: | A\;'s = eigenvalues of A, u;'s = eigenvalues of A,,_1:

)\n )\n—l )\3 )\2 )\1
@k 0@ %k 0k 0 Kk 0k 0 k% 0 k0
HMn—1 Hn—2 £L2 231
»  Many uses.

»  For example: interlacing theorem for roots of orthogonal polyno-
mials
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The Law of inertia

» Inertia of a matrix = [m, z, p] with m = number of < 0
eigenvalues, z = number of zero eigenvalues, and p = number of
> 0 eigenvalues.

Sylvester's Law of inertia: | If X € R™ ™ is nonsingular, then A
and XT AX have the same inertia.

#r3| Suppose that A = LDL' where L is unit lower triangular,
and D diagonal. How many negative eigenvalues does A have?

#14] Assume that A is tridiagonal. How many operations are re-
quired to determine the number of negative eigenvalues of A?
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#35| Devise an algorithm based on the inertia theorem to compute
the 2-th eigenvalue of a tridiagonal matrix.

#16| What is the inertia of the matrix

(%)

where F' is m X n, with n < m, and of full rank?

[Hint: use a block LU factorization]
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Bisection algorithm for tridiagonal matrices: |

»  Goal: to compute ¢-th eigenvalue of A (tridiagonal)

»  Get interval |a, b] containing @< A, < <A <D
spectrum [Gershgorin]: S A1 S

» lLet o0 = (a + b)/2 = middle of interval

»  Calculate p = number of positive eigenvalues of A — ol

e Ifp>1ithen \; € (0, ] &> set a:=o

a Ay Apq c A A, b
@ ® @

| ® i o

e Elsethen \; € [a, 0] &> set b:=0o

»  Repeat until b — a is small enough.
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The QR algorithm for symmetric matrices

»  Most important method used : reduce to tridiagonal form and
apply the QR algorithm with shifts.

» Householder transformation to Hessenberg form yields a tridiag-
onal matrix because

HAHT = A,

is symmetric and also of Hessenberg form » it is tridiagonal sym-
metric.

Tridiagonal form preserved by QR similarity transformation
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Practical method I

» How to implement the QR algorithm with shifts?

» |t is best to use Givens rotations — can do a shifted QR step
without explicitly shifting the matrix..

»  Two most popular shifts:

S = Qpy and s = smallestev. f A(n —1:n,n—1:n)
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Jacobt iteration - Symmetric matrices

» Main idea: Rotation matrices of the form

(1 ... 0 ... 0 0)
0 o o o C oo e S oo e 0 P

J(p,q,0) = | : : : ; :

0 o o o — 8 oo e C o o e 0 q

o .. 0 ..

c = cos@ and s = sin @ are so that J(p, q,0)' AJ(p, q,0)
has a zero in position (p, q) (and also (q, p))

»  Frobenius norm of matrix is preserved — but diagonal elements
become larger » convergence to a diagonal.
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» Let B=JVAJ (where J = J, 4).
Look at 2 X 2 matrix B([p, q|, [p, q]) (matlab notation)

\/

»  Keep in mind that ap,q = aqp and by = byp

bpp bpg\  [C —s App Qpg cC S
byp byg) \s c Qqp Qqq —Ss c
B (c —s) [capp — SQpq SApp + capq]

s C CQgp — SAqq| SApq + Chyq

* Cagq + 8%ay, + 2sC ay,

[cZCLpp + 8%aqq — 28¢ apq | (¢* — 5%)apg — sc(agq — app)]

»  Want: (c* — s%)apq — sc(agq — app) =0
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c — S Qqq — Qpp __
— = T
2sc 2apq

» Llettingt = s/c (= tan@) — quad. equation
t°+27t—1=0

\/

— 2 1
t = T__\/1_|_T V1472

\/

Select sign to get a smaller t so 8 < 7 /4.

1

V1 —|—t2;

Implemented in matlab script jacrot (A,p,q) — See HW6.

» Then: C = s=cx*xt
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»  Define: Ao = A — Dlag(A) = A ‘with its diagonal

entries replaced by zeros’

»  Observations: (1) Unitary transformations preserve ||.||r. (2)
Only changes are in rows and columns p and q.

> Let B = JTAJ (where J = J, ). Then,

2 2 2 12 2 2 12 2
app+aqq+2apq - bpp+bqq+2bpq o bpp_I_bqq

because b,; = 0. Then, a little calculation leads to:
|Bollf = 1Bl — > b5 = IlAIIZ — > b
Al =D ali+ ) ai— > bl

AOH%’ + (a'Iz)P + a’tzzq - bIZ)p — brzzq)
Aol — 2a,,

13-27 TB: 28-30; AB: 1.3.3, 3.2.3, 3.4.2, 3.5, 3.6.2; GvL 8.1-8.2.3 — Eigen2

13-27



» || Ao||F will decrease from one step to the next.

#o7| Let ||A0||I = MaX;+; |(1,7;j|. Show that

l4ollr < V/n(n —1)||Aolls

#ng| Use this to show convergence in the case when largest entry is
zeroed at each step.
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