EIGENVALUE PROBLEMS

- Background on eigenvalues/ eigenvectors / decompositions
- Perturbation analysis, condition numbers..
- Power method
- The QR algorithm
- Practical QR algorithms: use of Hessenberg form and shifts
- The symmetric eigenvalue problem.

Eigenvalue Problems. Introduction

Let A an n imes n real nonsymmetric matrix. The eigenvalue problem:

 $egin{aligned} Ax &= \lambda x \ x &\in \mathbb{C}^n: ext{ eigenvalue} \ x &\in \mathbb{C}^n: ext{ eigenvector} \end{aligned}$

Types of Problems:

- ullet Compute a few λ_i 's with smallest or largest real parts;
- Compute all λ_i 's in a certain region of \mathbb{C} ;
- Compute a few of the dominant eigenvalues;
- Compute all λ_i 's.

Eigenvalue Problems. Their origins

- Structural Engineering $[Ku = \lambda Mu]$
- Stability analysis [e.g., electrical networks, mechanical system,..]

12-1

- Bifurcation analysis [e.g., in fluid flow]
- Electronic structure calculations [Schrödinger equation..]
- Application of new era: page ranking on the world-wide web.

12-3

Basic definitions and properties

A complex scalar λ is called an eigenvalue of a square matrix A if there exists a nonzero vector u in \mathbb{C}^n such that $Au = \lambda u$. The vector u is called an eigenvector of A associated with λ . The set of all eigenvalues of A is the 'spectrum' of A. Notation: $\Lambda(A)$.

12-2

TB: 24-27; AB: 3.1-3.3;GvL 7.1-7.4,7.5.2 - Eigen

> λ is an eigenvalue iff the columns of $A - \lambda I$ are linearly dependent.

 \blacktriangleright ... equivalent to saying that its rows are linearly dependent. So: there is a nonzero vector w such that

$$w^H(A-\lambda I)=0$$

- $\blacktriangleright w$ is a left eigenvector of A (u= right eigenvector)
- λ is an eigenvalue iff $det(A \lambda I) = 0$ 12.4 TB: 24-27; AB: 3.1-3.3; GvL 7.1-7.4, 7.5.2 - Eigen

12-4

TB: 24-27; AB: 3.1-3.3;GvL 7.1-7.4,7.5.2 - Eigen

2-3

Basic definitions and properties (cont.)

An eigenvalue is a root of the Characteristic polynomial:

$$p_A(\lambda) = \det(A - \lambda I)$$

So there are n eigenvalues (counted with their multiplicities).

> The multiplicity of these eigenvalues as roots of p_A are called algebraic multiplicities.

The geometric multiplicity of an eigenvalue λ_i is the number of linearly independent eigenvectors associated with λ_i .

▶ Geometric multiplicity is ≤ algebraic multiplicity.

An eigenvalue is simple if its (algebraic) multiplicity is one.

► It is semi-simple if its geometric and algebraic multiplicities are equal.

∠₁ Consider

$$A = \begin{pmatrix} 1 & 2 & -4 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

Eigenvalues of *A*? their algebraic multiplicities? their geometric multiplicities? Is one a semi-simple eigenvalue?

- **Z**₁₂ Same questions if a_{33} is replaced by one.
- Z₁₃ Same questions if, in addition, a_{12} is replaced by zero.

12-5	TB: 24-27; AB: 3.1-3.3;GvL 7.1-7.4,7.5.2 - Eigen	12-6	TB: 24-27; AB: 3.1-3.3;GvL 7.1-7.4,7.5.2 - Eigen
	12-5		12-6

> Two matrices A and B are similar if there exists a nonsingular matrix X such that

 $A = XBX^{-1}$

- ► $Av = \lambda v \iff B(X^{-1}v) = \lambda(X^{-1}v)$ eigenvalues remain the same, eigenvectors transformed.
- \blacktriangleright Issue: find X so that B has a simple structure

Definition: **A** is diagonalizable if it is similar to a diagonal matrix

> THEOREM: A matrix is diagonalizable iff it has n linearly independent eigenvectors

12-7

- > ... iff all its eigenvalues are semi-simple
- \succ ... iff its eigenvectors form a basis of \mathbb{R}^n

TB: 24-27; AB: 3.1-3.3;GvL 7.1-7.4,7.5.2 - Eigen

Transformations that preserve eigenvectors

- Shift $B = A \sigma I$: $Av = \lambda v \iff Bv = (\lambda \sigma)v$ eigenvalues move, eigenvectors remain the same.
- Polynomial $B = p(A) = \alpha_0 I + \dots + \alpha_n A^n$: $Av = \lambda v \iff$ $Bv = p(\lambda)v$ eigenvalues transformed, eigenvectors remain the same.
- Invert $B = A^{-1}$: $Av = \lambda v \iff Bv = \lambda^{-1}v$ eigenvalues inverted, eigenvectors remain the same.
- Shift & $B = (A \sigma I)^{-1}$: $Av = \lambda v \iff Bv =$ Invert $(\lambda - \sigma)^{-1}v$

12-8

eigenvalues transformed, eigenvectors remain the same. spacing between eigenvalues can be radically changed.

> THEOREM (Schur form): Any matrix is unitarily similar to a triangular matrix, i.e., for any A there exists a unitary matrix Q and an upper triangular matrix R such that

 $A = Q R Q^H$

Any Hermitian matrix is unitarily similar to a real diagonal matrix, (i.e. its Schur form is real diagonal).

> It is easy to read off the eigenvalues (including all the multiplicities) from the triangular matrix R

Eigenvectors can be obtained by back-solving

Schur Form – Proof

Solution Show that there is at least one eigenvalue and eigenvector of **A**: $Ax = \lambda x$, with $||x||_2 = 1$

M₅ There is a unitary transformation P such that $Px = e_1$. How do you define P?

1 Show that $PAP^H = \left(rac{\lambda | **}{0 | A_2}
ight)$.

Z₁₇ Apply process recursively to A_2 .

▲ What happens if A is Hermitian?

Another proof altogether: use Jordan form of \boldsymbol{A} and QR factorization

12-9	TB: 24-27; AB: 3.1-3.3;GvL 7.1-7.4,7.5.2 - Eigen	12-10	TB: 24-27; AB: 3.1-3.3;GvL 7.1-7.4,7.5.2 - Eigen
	12-9		12-10

Perturbation analysis

► General questions: If *A* is perturbed how does an eigenvalue change? How about an eigenvector?

Also: sensitivity of an eigenvalue to perturbations

THEOREM [Gerschgorin] $orall \, \lambda \, \in \Lambda(A), \ \exists \ i \ \ ext{such that} \ \ |\lambda-a_{ii}| \leq \sum_{\substack{j=1 \ j \neq i}}^{j=n} |a_{ij}| \ .$

▶ In words: eigenvalue λ is located in one of the closed discs of the complex plane centered at a_{ii} and with radius $\rho_i = \sum_{j \neq i} |a_{ij}|$.

12-11

Proof: By contradiction. If contrary is true then there is one eigenvalue λ that does not belong to any of the disks, i.e., such that $|\lambda - a_{ii}| > \rho_i$ for all *i*. Write matrix $A - \lambda I$ as:

$$A - \lambda I = D - \lambda I - [D - A] \equiv (D - \lambda I) - F$$

where D is the diagonal of A and -F = -(D - A) is the matrix of off-diagonal entries. Now write

$$A - \lambda I = (D - \lambda I)(I - (D - \lambda I)^{-1}F).$$

From assumptions we have $||(D - \lambda I)^{-1}F||_{\infty} < 1$. (Show this). The Lemma in P. 5-3 of notes would then show that $A - \lambda I$ is nonsingular – a contradiction \Box

12-11

Gerschgorin's theorem - example

 \swarrow_{10} Find a region of the complex plane where the eigenvalues of the following matrix are located:

$$A = egin{pmatrix} 1 & -1 & 0 & 0 \ 0 & 2 & 0 & 1 \ -1 & -2 & -3 & 1 \ rac{1}{2} & rac{1}{2} & 0 & -4 \end{pmatrix}$$

Refinement: if disks are all disjoint then each of them contains one eigenvalue

> Refinement: can combine row and column version of the theorem (column version: apply theorem to A^H).

Bauer-Fike theorem

THEOREM [Bauer-Fike] Let $\hat{\lambda}$, \tilde{u} be an approximate eigenpair with $\|\tilde{u}\|_2 = 1$, and let $r = A\tilde{u} - \tilde{\lambda}\tilde{u}$ ('residual vector'). Assume A is diagonalizable: $A = XDX^{-1}$, with D diagonal. Then

 $\exists \; \lambda \in \; \Lambda(A) \; \; ext{ such that } \; \; |\lambda - ilde{\lambda}| \leq ext{cond}_2(X) \|r\|_2 \; .$

Very restrictive result - also not too sharp in general.

Alternative formulation. If E is a perturbation to A then for any eigenvalue $\tilde{\lambda}$ of A + E there is an eigenvalue λ of A such that:

$$|oldsymbol{\lambda} - oldsymbol{\hat{\lambda}}| \leq \mathsf{cond}_2(X) \|E\|_2$$
 .

Prove this result from the previous one.

TB: 24-27; AB: 3.1-3.3;GvL 7.1-7.4,7.5.2 - Eigen TB: 24-27; AB: 3.1-3.3;GvL 7.1-7.4,7.5.2 - Eigen 12-13 12-13 12-14 Conditioning of Eigenvalues $egin{array}{ccc} ightarrow & rac{\lambda(t)-\lambda}{t}w^{H}u(t) \ = w^{H}Eu(t) \end{array}$ \succ Assume that λ is a simple eigenvalue with right and left eigen-> Take the limit at t = 0, $\lambda'(0) = \frac{w^H E u}{w^H v}$ vectors u and w^H respectively. Consider the matrices: Eigenvalue $\lambda(t)$. A(t) = A + tEEigenvector u(t). > Note: the left and right eigenvectors associated with a simple Conditioning of λ of A relative to E is $\left|\frac{d\lambda(t)}{dt}\right|_{t=0}$. eigenvalue cannot be orthogonal to each other. Actual conditioning of an eigenvalue, given a perturbation "in $A(t)u(t) = \lambda(t)u(t)$ Write the direction of E'' is $|\lambda'(0)|$. Then multiply both sides to the left by w^H \succ In practice only estimate of ||E|| is available, so $w^{H}(A+tE)u(t)=\lambda(t)w^{H}u(t)$ ightarrow $|\lambda'(0)| \leq rac{\|Eu\|_2 \|w\|_2}{|(u,w)|} \leq \|E\|_2 rac{\|u\|_2 \|w\|_2}{|(u,w)|}$ $\lambda(t)w^{H}u(t) = w^{H}Au(t) + tw^{H}Eu(t)$ $= \lambda w^H u(t) + t w^H E u(t).$ TB: 24-27; AB: 3.1-3.3;GvL 7.1-7.4,7.5.2 - Eigen TB: 24-27; AB: 3.1-3.3;GvL 7.1-7.4,7.5.2 - Eigen 12-15 12-16 12-15 12-16

Definition. The condition number of a simple eigenvalue λ of an arbitrary matrix A is defined by

$$\mathsf{cond}(\lambda) = rac{1}{\cos heta(u,w)}$$

in which u and w^H are the right and left eigenvectors, respectively, associated with $\lambda.$

Example: Consider the matrix

$$A=egin{pmatrix} -149 & -50 & -154\ 537 & 180 & 546\ -27 & -9 & -25 \end{pmatrix}$$

> $\Lambda(A) = \{1, 2, 3\}$. Right and left eigenvectors associated with $\lambda_1 = 1$:

$$u = egin{pmatrix} 0.3162 \ -0.9487 \ 0.0 \end{pmatrix}$$
 and $w = egin{pmatrix} 0.6810 \ 0.2253 \ 0.6967 \end{pmatrix}$

So:
$$cond(\lambda_1) \approx 603.64$$

> Perturbing a_{11} to -149.01 yields the spectrum:

$$\{0.2287, 3.2878, 2.4735\}.$$

> as expected..

12-18

> For Hermitian (also normal matrices) every simple eigenvalue is well-conditioned, since $cond(\lambda) = 1$.

12-18

TB: 24-27; AB: 3.1-3.3;GvL 7.1-7.4,7.5.2 - Eigen

12-17	

Perturbations with Multiple Eigenvalues - Example

12-17

$$\blacktriangleright \ A = \begin{pmatrix} 1 \ 2 \ 0 \\ 0 \ 1 \ 2 \\ 0 \ 0 \ 1 \end{pmatrix} = I_3 + \begin{pmatrix} 0 \ 2 \ 0 \\ 0 \ 0 \ 2 \\ 0 \ 0 \ 0 \end{pmatrix} = I + 2J$$

- > Worst case perturbation is in 3,1 position: set $J_{31} = \epsilon$.
- ► Eigenvalues of perturbed A are the roots of $p(\mu) = (\mu 1)^3 4 \cdot \epsilon$.
- > Hence eigenvalues of perturbed A are $1 + O(\sqrt[3]{\epsilon})$.

▶ In general, if index of eigenvalue (dimension of largest Jordan block) is k, then an $O(\epsilon)$ perturbation to A can lead to $O(\sqrt[k]{\epsilon})$ change in eigenvalue. Simple eigenvalue case corresponds to k = 1.

12-19

Basic algorithm: The power method

> Basic idea is to generate the sequence of vectors $A^k v_0$ where $v_0 \neq 0$ – then normalize.

▶ Most commonly used normalization: ensure that the largest component of the approximation is equal to one.

The Power Method1. Choose a nonzero initial vector $v^{(0)}$.2. For $k = 1, 2, \ldots$, until convergence, Do:3. $v^{(k)} = \frac{1}{\alpha_k} A v^{(k-1)}$ where4. $\alpha_k = \operatorname{argmax}_{i=1,\ldots,n} |(Av^{(k-1)})_i|$ 5. EndDo

TB: 24-27; AB: 3.1-3.3;GvL 7.1-7.4,7.5.2 - Eigen

Convergence of the power method

THEOREM Assume there is one eigenvalue λ_1 of A, s.t. $|\lambda_1| > |\lambda_j|$, for $j \neq i$, and that λ_1 is semi-simple. Then either the initial vector $v^{(0)}$ has no component in Null $(A - \lambda_1 I)$ or $v^{(k)}$ converges to an eigenvector associated with λ_1 and $\alpha_k \rightarrow \lambda_1$.

Proof in the diagonalizable case.

> $v^{(k)}$ is = vector $A^k v^{(0)}$ normalized by a certain scalar $\hat{\alpha}_k$ in such a way that its largest component is 1.

> Decompose initial vector $v^{(0)}$ in the eigenbasis as:

$$v^{(0)} = \sum_{i=1}^n \gamma_i u_i$$
 .

> Each u_i is an eigenvector associated with λ_i .

TB: 24-27; AB: 3.1-3.3;GvL 7.1-7.4,7.5.2 - Eigen

Example: Consider a 'Markov Chain' matrix of size n = 55. Dominant eigenvalues are $\lambda = 1$ and $\lambda = -1 >$ the power method applied directly to A fails. (Why?)

12-21

> We can consider instead the matrix I + A The eigenvalue $\lambda = 1$ is then transformed into the (only) dominant eigenvalue $\lambda = 2$

NI C 1.CC		
Norm of diff.	Res. norm	Eigenvalue
0.639D-01	0.276D-01	1.02591636
0.129D-01	0.513D-02	1.00680780
0.192D-02	0.808D-03	1.00102145
0.280D-03	0.121D-03	1.00014720
0.400D-04	0.174D-04	1.00002078
0.562D-05	0.247D-05	1.0000289
0.781D-06	0.344D-06	1.0000040
0.973D-07	0.430D-07	1.0000005
	0.639D-01 0.129D-01 0.192D-02 0.280D-03 0.400D-04 0.562D-05 0.781D-06	0.639D-01 0.276D-01 0.129D-01 0.513D-02 0.192D-02 0.808D-03 0.280D-03 0.121D-03 0.400D-04 0.174D-04 0.562D-05 0.247D-05 0.781D-06 0.344D-06 0.973D-07 0.430D-07

 \blacktriangleright Note that $A^k u_i = \lambda_i^k u_i$

$$egin{aligned} v^{(k)} &= rac{1}{scaling} ~ imes ~\sum_{i=1}^n \lambda_i^k \gamma_i u_i \ &= rac{1}{scaling} ~ imes \left[\lambda_1^k \gamma_1 u_1 + \sum_{i=2}^n \lambda_i^k \gamma_i^k u_i
ight] \ &= rac{1}{scaling'} ~ imes \left[u_1 + \sum_{i=2}^n \left(rac{\lambda_i}{\lambda_1}
ight)^k rac{\gamma_i}{\gamma_1} u_i
ight] \end{aligned}$$

- > Second term inside bracket converges to zero. QED
- Proof suggests that the convergence factor is given by

$$ho_D=rac{|\lambda_2|}{|\lambda_1|}$$

12-22

where λ_2 is the second largest eigenvalue in modulus.

TB: 24-27; AB: 3.1-3.3;GvL 7.1-7.4,7.5.2 - Eigen

The Shifted Power Method

12-22

In previous example shifted A into B = A + I before applying power method. We could also iterate with $B(\sigma) = A + \sigma I$ for any positive σ

Example: With $\sigma = 0.1$ we get the following improvement.

Iteration	Norm of diff.	Res. Norm	Eigenvalue
20			1.00524001
40	0.729D-03	0.210D-03	1.00016755
60	0.183D-04	0.509D-05	1.00000446
80	0.437D-06	0.118D-06	1.00000011
88	0.971D-07	0.261D-07	1.0000002

12-23

TB: 24-27; AB: 3.1-3.3;GvL 7.1-7.4,7.5.2 - Eigen

12-24

> Question: What is the best shift-of-origin σ to use?

Easy to answer the question when all eigenvalues are real. Assume all eigenvalues are real and labeled decreasingly:

$$\lambda_1 > \lambda_2 \geq \lambda_2 \geq \cdots \geq \lambda_n,$$

Then: If we shift A to $A - \sigma I$:

The shift $\pmb{\sigma}$ that yields the best convergence factor is:

$$\sigma_{opt} = rac{\lambda_2 + \lambda_n}{2}$$

Plot a typical function $\phi(\sigma) = \rho(A - \sigma I)$ as a function of σ . Determine the minimum value and prove the above result.

Inverse Iteration

Observation: The eigenvectors of A and A^{-1} are identical.

- > Idea: use the power method on A^{-1} .
- Will compute the eigenvalues closest to zero.
- > Shift-and-invert Use power method on $(A \sigma I)^{-1}$.
- > will compute eigenvalues closest to σ .
- > Rayleigh-Quotient Iteration: use $\sigma = \frac{v^T A v}{v^T v}$ (best approximation to λ given v).
- > Advantages: fast convergence in general.
- > Drawbacks: need to factor A (or $A \sigma I$) into LU.

12-25 TB: 24-27; AB: 3.1-3.3;GvL 7.1-7.4,7.5.2 - Eigen 12-26 12-25 12-26 12-26